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Abstract

Medical eye-tracking data is an important information
source for understanding how radiologists visually inter-
pret medical images. This information not only improves
the accuracy of deep learning models for X-ray analysis
but also their interpretability, enhancing transparency in
decision-making. However, the current eye-tracking data is
dispersed, unprocessed, and ambiguous, making it difficult
to derive meaningful insights. Therefore, there is a need to
create a new dataset with more focus and purposeful eye-
tracking data, improving its utility for diagnostic applica-
tions. In this work, we propose a refinement method inspired
by the target-present visual search challenge: there is a spe-
cific finding and fixations are guided to locate it. After re-
fining the existing eye-tracking datasets, we transform them
into a curated visual search dataset, called GazeSearch,
specifically for radiology findings, where each fixation se-
quence is purposefully aligned to the task of locating a par-
ticular finding. Subsequently, we introduce a scan path pre-
diction baseline, called ChestSearch, specifically tailored
to GazeSearch. Finally, we employ the newly introduced
GazeSearch as a benchmark to evaluate the performance
of current state-of-the-art methods, offering a comprehen-
sive assessment for visual search in the medical imaging
domain. Code is available at https://github.com/
UARK-AICV/GazeSearch.

1. Introduction

Artificial Intelligence (AI) has been growing rapidly and
become an important part of daily life [3, 32, 34–36, 42,
46–49,56,74,79], including important workers like clinical
experts and healthcare providers [4, 25, 31, 37, 54, 65, 72].
Beyond achieving high performance, it is essential to de-
velop AI systems that offer explainable and interpretable
decision-making [2,21,23,51,52,61,63,64,73]. This is es-
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Figure 1. (a) Given a CXR image, we are interested in radiolo-
gist’s eye movement of radiologist when they search for a finding.
(b) But, the existing eye gaze datasets are recorded in a free-view
form, where fixations are distributed across the entire CXR image
and making it unclear which fixations correspond to specific find-
ings. (c) Our new GazeSearch dataset, where fixation sequence is
focused for a specific finding. For example, the gaze sequence in
(c.1) targets lung opacity, while (c.2) focuses on pneumonia. Each
circle depicts a fixation, with the number and radius indicating its
order and duration, respectively.

pecially important in sensitive domains such as healthcare,
where credibility and reliability are critical to ensuring trust
and safe implementation. Even though human experts re-
main the ultimate authority in decision-making, researchers
are focusing on improving AI-assisted systems to reduce
the burden for the experts. For example, we can use AI to
produce preliminary results and the experts can either con-
firm or adjust [72]. As a result, the collaborative approach
between AI and professionals has successfully improved ra-
diological diagnosis in many cases compared to radiologists
or the system alone [65]. However, a key challenge is build-
ing trust in AI, especially with black-box models in health-
care, such as CXR analysis. This has increased the demand
for models that mimic radiologists’ behavior to improve in-
terpretability. For instance, aligning AI systems with radi-
ologists’ visual attention patterns is essential [51, 55]. This
has opened a new domain of research focused on model-
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ing the radiologists’ eye movements to improve the trans-
parency and reliability of AI systems in clinical practice [7].

Recognizing the importance of understanding how ra-
diologists’ eye movements impact diagnosis, datasets like
EGD [30] and REFLACX [5] have been introduced. But,
these eye-tracking datasets present two major challenges:
Challenge #1: Free-view format - Existing eye-tracking
datasets are collected in a free-view format, where fixa-
tions are distributed across the entire CXR image, making it
unclear which fixations correspond to specific findings (as
shown in Figure 1 (b)). Moreover, these datasets often con-
tain ambiguity and suffer from misalignment between the
recorded fixations and the findings in the report, rendering
them unsuitable for accurate scan path prediction.
Challenge #2: Lack of finding-aware radiologist’s scan-
path models - Most existing scanpath prediction mod-
els [43,75,77] are designed for general applications and lack
the domain-specific expertise needed for radiology. Fur-
thermore, current models trained on medical eye-tracking
data are not tailored to the challenges of finding-aware vi-
sual search in radiology. For instance, I-AI [51] only as-
sociates diseases with abnormalities in specific anatomical
areas. While RGRG [60] uses anatomical bounding boxes
without considering gaze for report generation.

To address the challenge #1, we propose a finding-aware
radiologist’s visual search dataset, named GazeSearch.
Our objective is to minimize the misalignment between the
findings extracted from the radiology reports and their cor-
responding fixations. Insprired by the visual search datasets
like COCO-Search18 [75] or Air-D [8], we further process
GazeSearch by reducing the fixation length using a radius-
based filtering heuristic, ensuring that the direction of fix-
ations remains clear and manageable. Additionally, for ev-
ery finding, we ensure that the duration of fixations within
the location of the given finding is maximized. To create
GazeSearch dataset, we utilize the existing free-view eye
gaze datasets EGD [30] and REFLACX [5] (Figure 1(b)) to
conduct a finding-aware radiologist’s visual search dataset
(Figure 1(c)), which produces two scanpaths for particular
findings e.g., “lung opacity” (Figure 1 (c.1)) and “pneumo-
nia”(Figure 1 (c.2)) in this example. The goal of releas-
ing this dataset is to foster the development of algorithms
that better mimic radiologists, especially focusing on under-
standing observation sequences, attention (duration), fre-
quency on key regions, and expert knowledge [45, 71].

To address challenge #2, we introduce ChestSearch,
a scanpath prediction architecture that surpasses existing
models. ChestSearch builds on a standard meta architec-
ture [13] featuring a feature extractor [24, 39] and a Trans-
former decoder [62], with two key enhancements. First, we
train the feature extractor using the self-supervised MGCA
method [66] on the large MIMIC-CXR [29] dataset, provid-
ing a strong initialization for training. Second, we utilize the

modified cross attention from [12] with a query mechanism
to select only relevant fixations for predicting the next fix-
ation. Then, the model’s three heads handle distinct tasks:
predicting 2D coordinates, duration, and stopping points.
Finally, we benchmark ChestSearch against current state-
of-the-art visual search models on GazeSearch, showcasing
the current advancements in radiology visual search.

Our main contributions are:
• GazeSearch: We propose a processing technique that

converts free-view eye gaze data into finding-aware ra-
diologist’s visual search data. This curated dataset is
the first target-present visual search dataset for chest
X-ray, making possible deep learning modeling of
medical visual search prediction.

• ChestSearch: We propose a transformer-based model
that utilizes a radiology pretrained feature extractor
and query mechanism to choose only relevant fixations
to predict subsequent fixations based on previous ones.
Additionally, we evaluate ChestSearch against several
leading generic scanpath prediction models using our
GazeSearch to showcase the current progress in the
medical visual search task.

2. Related works
Visual Search Datasets. Search datasets have been rising
recently due to the interest in understanding human behav-
ior [8,19,22,28,50,67,80]. This is particularly evident in the
general visual domain, where numerous datasets have been
created across diverse settings. These datasets cover a wide
range of scenarios, from searching for multiple targets si-
multaneously [22] to focusing on a single or two target cat-
egories [19, 80]. Some datasets, like COCO-Search18 [75],
feature a large number of target objects, or adopt a Visual
Question Answering approach [8]. In contrast, the medi-
cal domain has lagged behind in terms of dedicated visual
search datasets. Existing medical datasets primarily focus
on multi-target search tasks, as demonstrated by datasets
like EGD [30] and REFLACX [5]. However, there is a
significant lack of search datasets tailored for the medical
domain. This paper makes a novel contribution by address-
ing this research gap. We introduce the first target-present
visual search dataset specifically designed for the medical
field. This dataset opens up new avenues for research and
development in this critical area.
Visual Search Baselines. Parallel to the growth of visual
search datasets, significant advancements have been made
in scan path prediction accuracy [1, 14, 33, 69, 81]. Early
scanpath models mostly rely on sampling fixations from
saliency maps [27, 41, 68, 70]. Recent advancements, in-
cluding the integration of deep neural networks [9, 43, 59,
75, 77, 78], reinforcement learning techniques [9, 75, 77],
and transformer-based architectures [10, 43, 53, 76], have
significantly deepened our understanding of the temporal
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Figure 2. Pipeline of GazeSearch creation, which processes free-
view eye gaze data as input and outputs a finding-aware scanpath.

dynamics of human attention. However, generic models
are designed for broad application, so the performance of
generic visual search models on CXR is uncertain and po-
tentially subpar. This work introduces a transformer-based
method that can work well without these restrictive assump-
tions. Additionally, we further conduct a comparative ex-
periment between state-of-the-art methods from the general
visual domain and our proposed method, providing a com-
prehensive evaluation of their performance in the medical
domain.

3. GazeSearch Dataset

When studying free-view eye-tracking datasets from
sources like REFLACX [5] and EGD [30], we notice that
the eye-tracking data (including both gaze and fixations) is
often ambiguous and lacks clarity. This ambiguity comes
from the data collection settings, where radiologists look
for multiple findings simultaneously. As a result, each fix-
ation captures visual information relevant to multiple find-
ings rather than a specific finding. Therefore, the fixations
from these eye-tracking datasets are unsuitable for studying
their relationship to specific findings, i.e. addressing the vi-
sual search problem. Additionally, when visualizing these
gaze points or fixations over an image, they often cover
more than 80% of the lung area, even though the actual
anomaly area might be much smaller. We calculate the fix-
ation coverage distribution in Supplementary. This raises

Algorithm 1 Radius-based Filtering Procedure

Input: Image width W , image height H , bounding
boxes B, max length M , radius r, fixations F =
{(x1, y1, d1), (x2, y2, d2), . . . , (xn, yn, dn)}
Output: Filtered fixations F̂
Initialize: F̂ = (W/2, H/2, 0.3)
// The last point must be inside B.
j ← max{i|(xi, yi) ∈ B, (xi, yi, di) ∈ F , 1 ≤ i ≤ n}
// Apply radius heuristic with looping backward.
c← {(xj , yj)}, where (xj , yj , dj) ∈ F
for each point (xi, yi, di) ∈ F from j − 1 to 1 do

if (xi, yi) is within radius r of (xi+1, yi+1) then
c← c ∪ {(xi, yi)}

else
x← 1

|c|
∑

k xk, y ← 1
|c|

∑
k yk, d←

∑
k dk,

where (xk, yk, dk) ∈ c
c← {(xi, yi)}
F̂ ← F̂ ∪ {(x, y, d)}
if |F̂ | = M then

break
end if

end if
end for
if c ̸= {} and |F̂ | < M then

x← 1
|c|

∑
k xk, y ← 1

|c|
∑

k yk, d←
∑

k dk,
where (xk, yk, dk) ∈ c
F̂ = F̂ ∪ {(x, y, d)}

end if

Algorithm 2 Time-spent Constraining Procedure

Input: F̂ = {(x1, y1, d1), (x2, y2, d2), . . . , (xn, yn, dn)},
bounding boxes B
Output: Constrained fixations F ′

dout ← {
∑n

i=k,(xi,yi)/∈B di|(xk, yk, dk) ∈ F̂ , 1 ≤ k ≤
n}.
din ← {

∑n
i=k,(xi,yi)∈B di|(xk, yk, dk) ∈ F̂ , 1 ≤ k ≤

n}.
D ← {i|dini ≥ douti , 1 ≤ i ≤ n}.
if 1 /∈ D then

t← minD
F ′ ← {(xi, yi, di)|i ≥ t, (xi, yi, di) ∈ F̂}

end if

a concern that using the free-view fixations from the given
datasets may not be effective and could even pose risks in
sensitive sectors like healthcare, particularly for tasks re-
quiring precise localization of specific findings.

To solve this issue, one way is to collect eye-tracking
data under the visual search setting directly. However, to
collect data by having radiologists examine each of the 14
standard findings in CheXpert [26], would be costly and
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time-consuming. Therefore, this paper will propose an al-
ternative technique that leverages eye-tracking data directly
from the free-view setting to convert to the finding-aware
visual search setting.

Inspired by visual search, we studied the COCO-
Search18 [75], Air-D [8], and COCO-Freeview [11,78], and
identified two key properties that are required in a visual
search dataset:
Property #1: Late fixations tend to converge to more deci-
sive regions of interest (ROIs) [8]. And, Shi et al. [8] have
concluded the late fixations are for searching.
Property #2: The fixations within the object of interest tend
to have longer durations, while those outside the object are
typically shorter.

Based on those two facts, we propose an approach to
convert from free-view data into a visual search format, en-
suring the filtered fixations retain properties #1 and #2 with-
out sacrificing too many fixations. Figure 2 illustrates the
overview of our data processing pipeline, including Naive
Finding Mapping (Section 3.1) to clean irrelevant fixations
for a given finding, Finding-Anatomy Relation Matrix (Sec-
tion 3.2) to extract key regions, and finally Visual Search
Constraint Imposition (Section 3.3) to produce the fixations
that have both visual search properties.

3.1. Naive Finding Mapping

The first problem we must solve is the mismatch between
the fixations and the corresponding radiologists’ report sen-
tences. The main reason is radiologists observe the images
first and then describe their findings, meaning the fixations
within the time frame of a sentence may not fully capture
the findings reported. Inspired by I-AI [51], we start by
completely removing fixations after the current spoken sen-
tence. Let S = {s1, s2, ..., s|S|} be the sequence of sen-
tences in the transcript. Let C = {c1, c2, ..., cm} be the
set of possible findings (e.g., CheXpert labels). We define
a function ϕ : S → C where cj = ϕ(si) if sentence si
corresponds to finding cj . In our implementation, ϕ(·) is
the Chexbert model [57]. For a target finding c′ ∈ C, let
u = max{i|ϕ(si) = c′, 1 ≤ i ≤ |S|}. Then, the new
finding-aware fixations F for c′ is

F = {(xi, yi, ti, di)|(xi, yi, ti, di) ∈ F, 0 ≤ ti ≤ eu} (1)

where F = {(x1, y1, t1, d1), .., (x|F |, y|F |, t|F |, d|F |)} is
the free-view fixations, with (xi, yi) as spatial coordinates,
ti as captured timestamp, and di as duration, and eu is
the ending time of the sentence su. From this point on-
wards, we only use the triplet (xi, yi, di) and ignore the
captured timestamp ti for our fixation sequence: F =
{(x1, y1, d1), . . . , (xn, yn, dn)}, where n = |F| is the fixa-
tion sequence length.

3.2. Finding-Anatomy Relation Matrix

To address this, we leverage the Chest ImaGenome [71]
dataset, which offers pairs of findings and their correspond-
ing anatomies, along with anatomy bounding boxes linked
to each finding. For precision, we rely on the gold subset
of Chest ImaGenome to construct a relation matrix between
findings and anatomies. As a final step, a radiologist with
over 15 years of experience thoroughly reviews and refines
the matrix. The finalized matrix is included in the Supple-
mentary Material. Once the relation matrix is completed,
we reference the given finding c′ to identify the correspond-
ing anatomies and utilize the ground truth anatomy bound-
ing boxes provided by Chest ImaGenome as our B for the
subsequent steps.

3.3. Visual Search Constraint Imposition

After Section 3.1, the maximum fixation sequence length
can be over 340 fixations for a finding. Therefore, another
task we must solve is reducing this length to an interpretable
level for humans.

Utilizing both properties (1) and (2) as our guidance for
this process, we perform two main steps: radius-based fil-
tering (to enforce property #1) and time-spent constraining
(to enforce property #2). Besides property #1, we observe
that the captured fixations from EGD and REFLACX cover
one-degree visual angle [5, 30, 38]. Based on that fact, we
use the Algorithm 1 to cluster the finding-aware fixations
F to create another fixation set F̂ , with a larger radius r of
two-degree of visual angle and M is the max length of fix-
ation sequence. Property #1 is enforced by iterating back-
ward from the end to the beginning of the fixation sequence
F . Then, we use the Algorithm 2 to make sure the late fixa-
tions must spend the most time in the anatomies of interest,
which satisfies property #2.

In Algorithms 1 and 2, we define a point (x, y) to be in
the bounding box sets B for notation convenience:

(x, y) ∈ B ⇐⇒ xleft ≤ x ≤ xright, ytop ≤ y ≤ ybottom,

∀(xleft, ytop, xright, ybottom) ∈ B (2)

To align with the COCO-Search18 dataset, we set the max-
imum fixation length to M = 7 and add a default center
as the start fixation. This choice is based on the observa-
tion that 95% of the samples in COCO-Search18 have fix-
ation lengths under 7. For the first fixation’s duration, we
assign 0.3 seconds to it, which reflects the duration of 91%
of first fixations in COCO-Search18. In total, GazeSearch
has 2,081 images with 413 samples from EGD and 1,668
samples from REFLACX. There are a total of 13 findings.
Each sample has fixations for 1 to 6 findings and has a max
length of 7, including the default middle fixation. For train-
ing and evaluation, we split the dataset into 1,456 samples
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Table 1. Usage validation experiments on our GazeSearch. mHC
(mean Heatmap Coverage) is the average ratio of the heatmap area
to the lung area across all images in GazeSearch.

Method Fixation Type AUC mHC
Naive Classifier ✗ 76% ✗

Temporal Classifier Freeview 81% 91%
Finding-aware (GazeSearch) 81% 44%

for training (70%), 208 samples for validation (10%), and
417 samples for testing (20%).

3.4. Usage Validation

Filtering fixations requires discarding information, so it
is essential to test and ensure that the new data remains
valuable. To validate that GazeSearch’s fixations can be as
useful as the free-view fixation maps from EGD and RE-
FLACX, we follow Karargyris et al. [30] to perform the
Temporal Heatmap experiment. This experiment evaluates
whether eye gaze data can enhance classifier performance
when using ground truth fixations as temporal inputs. The
results, Table 1, indicate that despite using only half the area
compared to the free-view setting, performance remains
comparable. Detailed implementation of this experiment is
provided in the Supplementary.

4. ChestSearch
Given a CXR image I of dimensions H×W and a target

finding c′, our objective is to generate a scan-path comprises
of fixations y = {fi}ni=1, where n represents the number of
fixations, and fi = (xi, yi, di) is the fixation at 2D coordi-
nate (xi, yi) with a duration of di.

Figure 3 provides an overview of our method. The pro-
cess begins by applying a Feature Extractor (Section 4.1)
to process I to extract both detailed and high-level vi-
sual features. Following this, a Spatiotemporal Embed-
ding (Section 4.2) embeds previous fixations, combined
with multi-resolution features, to capture contextual rela-
tionships within the sequence. These features are passed
through a transformer decoder with cross-attention, self-
attention, feedforward layers, and normalization (Sec-
tion 4.3) to create a decoded latent feature. Finally, the
decoded feature is fed into three heads to predict the next
fixation: termination prediction (Section 4.4), fixation du-
ration (Section 4.5), and distribution for the next fixation
(Section 4.6)

4.1. Feature Extractor

Using features from only the last layer is inadequate for
predicting scanpaths [77]. Therefore, we employ ResNet-
50 FPN [39] as our Feature Extractor module (FE). Be-
sides, using the ImageNet [16] checkpoint may not be op-
timal for the medical domain, so we train the FE using a
self-supervised approach based on MGCA [66] with the

Feature Extractor

2D Spatial Indexing

2D Positional Encoding

1D Temporal Embedding

...

...

...

Self Attention

...

MLP

Fixation Decoder

...

Sample

Cross Attention
Add & Norm
Self Attention
Add & Norm

FFN
Add & Norm

Spatiotemporal Embedding

Yes

0.76

QK V

Figure 3. The figure provides a detailed view of Chest-
Search. It begins by processing the previous fixations, denoted
as {(xi, yi, di)}t−1

i=1 , along with the input chest X-ray image I ,
through a Feature Extractor and Spatiotemporal Embedding to
generates the spatiotemporal embedded feature E. Next, the Fix-
ation Decoder uses a learnable query qc and the embedded feature
E to decode it into a feature Ē. From here, three heads use Ē to
predict the next fixation coordinates (x̂t, ŷt, d̂t). Here, at step t,
the termination head outputs “Yes,” indicating that this is the final
fixation for the image I .

MIMIC-CXR dataset [29]. From the CXR image I with
size H × W , FE produces four multi-scale feature maps
P = {P 1, . . . , P 4}. Then we need to mimic how human
see an image: at first we only see the image at a high level
understanding, with no clear details, and then we look care-
fully to search for what we need [75]. So we use one feature
map with low resolution P l = P 1 ∈ RC× H

32×
W
32 , where

C is the channel dimension, to represent high-level visual
feature, and one high-resolution feature map Ph = P 4 ∈
RC×H

4 ×W
4 to represent detailed visual information.

4.2. Spatiotemporal Embedding

Given the previous predicted fixations {(xi, yi)}t−1
i=1 , P l,

and Ph, we then embed the previous fixations to create the
feature list as the input for the decoder in Section 4.3.
2D Spatial Indexing. Every (xi, yi), where 0 ≤ xi ≤ W
and 0 ≤ yi ≤ H , is scaled down to the same resolution as of
Ph, which result in the new 0 ≤ x′

i ≤ W
4 and 0 ≤ y′i ≤ H

4
in our case. Then, we index the feature cell at the coordinate
(x′

i, y
′
i) in Ph, called Ph

i . We will have the list of feature
{Ph

i }
t−1
i=1 .

2D Positional Embedding. For every Ph
i , we encode the

spatial information by using positional encoding twice, first
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in the x-axis, then in the y-axis. As the 2D order is impor-
tant, we enforce the sinusoid version of positional encoding.
1D Temporal Embedding. We also need to let the model
know the order of each fixations. However, the role of fixa-
tion order in diagnosing CXR in practice is complicated, so
we let the model decide the embedding by applying a learn-
able position embedding here. This results in the {P̄h

i }
t−1
i=1

sequence of embedded feature.
Self Attention. Finally, we feed {P̄h

i }
t−1
i=1 into several lay-

ers of self-attention to aaggregate information so that each
position is influenced by the relevant fixations. In the self-
attention layers, we also provide the model with a low-
resolution feature map P l to supply high-level feature infor-
mation. This intuition is also proven effected empirically, as
it will be shown later in Section 5.4. The final embeddings
are E = {El} ∪ {Eh

i }
t−1
i=1 , where El ∈ RD× H

32∗
W
32 and

Eh
i ∈ RD.

4.3. Fixation Decoder

At this layer, we have the finding list q = {qc}|q|c which
serves as the set of queries. The number of queries is the
number of findings in our dataset |q| = 13 with qc ∈ RD is
a learnable embedding for the current finding query c. The
previous module (Section 4.2) gives us the embeddings of
previous fixations E.

The Fixation Decoder module is the modified trans-
former decoder [12] including the blocks as shown in Fig-
ure 3. The cross-attention block uses the query embedding
q as the query input Q, with E serving as both key (K)
and value (V). This allows the model to capture the corre-
lations among previous fixations and accurately predict the
next fixation. The resulting feature then passes through self-
attention layers, residual connections, normalization, and a
feed-forward network. This process repeats for L layers in
the decoder. The final output Ē ∈ R|q|×D is then processed
by three different heads.

4.4. Termination Head

A fixation sequence’s length can vary, so our model
needs to learn when to stop. To achieve this, we use a
head consisting of a fully connected (FC) layer followed
by a sigmoid function that maps Ē to termination value i.e.,
τ̂ ct ∈ R = sigmoid(FCτ (Ē)).

4.5. Duration Head

The duration can be considered as a Gaussian distribu-
tion. We use Ē, then regress it into a mean value µdt

=
FCµ(Ē) and a log-variance λdt = FCλ(Ē):

d̂t = µdt
+ ϵdt

· exp(0.5λdt
),

ϵdt
∼ N (0, 1)

(3)

where ϵdt noise gives our prediction a probabilistic charac-
teristic, and d̂t ∈ R|q| is the duration prediction. The inspi-

ration comes from using the reparameterization trick [18],
which allows us to backpropagate from the label back to the
normal distribution.

4.6. Distribution Head

Because fixation is random in nature, we predict a 2D
distribution in the form of a heatmap ĥt ∈ [0, 1]|q|×(H

4 ∗W
4 ).

Formally, we compute:

Ē′ = MLP(Ē)

ĥt = sigmoid(Matmul(Ē′, Ph)) (4)

where Matmul(·, ·) is the matrix multiplication between two
input tensors, and Ē′ ∈ R|q|×D is the latent embedding
prepared for heatmap generation. At inference, we sample
the next 2D coordinate f̂t = (x̂t, ŷt) from the distribution
map ĥt for every given timestamp t.

4.7. Objective Functions

ChestSearch has three objectives, each corresponding to
one of its heads: the loss between the ground truth and pre-
dicted distributions, the loss for termination, and the loss for
duration.

The termination loss is just a standard binary cross-
entropy between the predicted termination value τ̂t and the
corresponding ground truth τt.

Lτ = −τt log(τ̂t)− (1− τt) log(1− τ̂t), (5)

The distribution loss is defined as focal pixel-wise loss:

Lh = − 1
N

∑
ij

{
(1− ĥij)

γ log(ĥij) if hij = 1,

(1− hij)
α(ĥij)

γ log(1− ĥij) otherwise,
(6)

where 0 ≤ i ≤ H
4 , 0 ≤ j ≤ W

4 are the 2D indexes, N =
H
4 ∗

W
4 is the number of values, α and γ are the hyper-

parameters indicating the importance of each pixel. The
duration loss is defined as the L1 loss, i.e., Ld = |d̂t − dt|.

Finally, we train all three losses jointly.

L = Lτ + Lh + Ld (7)

5. Experiments
5.1. Implementation and Metrics

Implementation details. All images are scaled down to
224× 224 for computing efficiency. The Fixation Decoder
has L = 6 layers with a hidden dimension D = 384. The
MLP of Fixation Distribution Head consists of 384 units
with 3 layers and ReLU activation. Eq. (6) has α = 4 γ = 2
based on the best validation results. The Feature Extractor’s
backbone is ResNet-50 [24], and we obtain the ResNet-50
checkpoint using MGCA [66] for 50 epochs with a batch
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Table 2. Performance comparison between our ChestSearch and SOTA visual search methods.

Method ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑w/o Dur. w/ Dur. Vector Direction Length Position Duration
IRL [75] 0.1495 - 0.8248 0.6402 0.7688 0.6998 - 6.6250 0.7043
FFMs [77] 0.2766 - 0.8914 0.6567 0.8785 0.8140 - 5.9221 0.8055
ChenLSTM [9] 0.2751 0.2153 0.8825 0.6222 0.8731 0.7940 0.6384 5.3468 0.7841
ChenLSTM-ISP [10] 0.2863 0.2205 0.8847 0.6430 0.8721 0.7980 0.6504 5.2895 0.7865
Gazeformer [43] 0.2971 0.2042 0.9080 0.6506 0.9035 0.8147 0.5901 5.1024 0.8030
Gazeformer-ISP [10] 0.2736 0.2146 0.9038 0.6181 0.8892 0.8031 0.6755 5.1905 0.7875
HAT [76] 0.3120 - 0.9064 0.6443 0.9065 0.8138 - 5.0613 0.8006
Our ChestSearch 0.3321 0.2232 0.9173 0.6790 0.9174 0.8293 0.6951 4.8831 0.8089
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Figure 4. Qualitative results between our ChestSearch compared with ChenLSTM-ISP, Gazeformer, Gazeformer-ISP, and HAT. Four
different findings (rows) including Atelectasis, Cardiomegaly, Edema, and Lung lesion are shown from the top to bottom. Each circle
represents a fixation, with the number and radius indicating its order and duration, respectively. As HAT only predicts 2D coordinates, we
let all predicted fixations of HAT have the same radius.

size of 144. We then finetune this checkpoint jointly with
the full pipeline. We train the full pipeline for 30,000 iter-
ations with a learning rate of 1 × 10−5 and a batch size
of 32. The entire training process was conducted using
AdamW [40], on a single A6000 GPU with 48GB of RAM.

Metrics. We evaluate fixation scanpath prediction accu-
racy using various metrics: ScanMatch [15, 58] applies the
Needleman-Wunsch algorithm [44] to compare fixation lo-
cations and durations; MultiMatch [17] assesses similar-
ity across five dimensions; String-Edit Distance (SED) [6,
20] compares character strings representing image regions;
and Scaled Time-Delay Embedding (STDE) [68] mea-
sures mean minimum Euclidean distances between sub-
sequences of predicted and ground truth scanpaths.

Compared Methods. We evaluate several state-of-the-

art (SOTA) visual search methods on our GazeSearch:
IRL [75], FFMs [77], ChenLSTM [9], Gazeformer [43],
ChenLSTM-ISP [10], Gazeformer-ISP [10], and HAT [76].
Note that Gazeformer and Gazeformer-ISP require a pre-
trained CLIP component to encode the finding names, so
we replace its default CLIP with BiomedCLIP [82]. We ad-
here to the original training practices for all baselines. For
more details, please refer to the Supplementary.

5.2. Quantitative results

Table 2 demonstrates the proposed method’s superior
performance, surpassing SOTA approaches. Note that
IRL, FFMs, and HAT do not predict fixation duration,
so their evaluation on this metric is excluded. IRL and
FFMs face challenges with sample efficiency due to re-
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inforcement learning pipelines, while ChenLSTM variants
and ISP methods are limited by their specialized mod-
ules—ChenLSTM relies on pretrained object detectors and
ISPs on Observer-Centric modules. HAT and Gazeformer
overgeneralize and fail to fully leverage domain-specific in-
formation by design, with HAT ignoring duration data and
Gazeformer relying heavily on CLIP for zero-shot visual
search. Our method avoids these limitations. High scores in
metrics such as ScanMatch, MultiMatch, SED, and STDE
demonstrate our method’s capability to effectively capture
complex scanpath dynamics, setting a new standard in chest
X-ray target-present visual search.

5.3. Qualitative results

Figure 4 presents a qualitative comparison of scan-
path patterns across different radiology findings and mod-
els, including radiologists and several state-of-the-art ap-
proaches. Generally, ChestSearch predicts more con-
sistent and radiologist-like fixations than other methods.
ChenLSTM-ISP often exhibits scattered, less focused pat-
terns, while Gazeformer-ISP may overlook key areas or fo-
cus on fewer locations. Although Gazeformer aligns better
with ground truth than its ISP variant, it occasionally misses
critical regions, such as lung lesions. HAT performs reason-
ably well but frequently covers the entire lung, even when
attention should be limited to smaller areas, such as in car-
diomegaly. In contrast, our ChestSearch shows fixation pat-
terns more closely resembling those of radiologists, outper-
forming other state-of-the-art methods. Overall, Figure 4
underscores the effectiveness of our approach in mimicking
expert gaze patterns across different findings. Additional
comparison will be included in the Supplementary.

5.4. Ablation study

To study the design choice of our proposed architecture,
we ablate our method under several aspects.
The importance of low- and high-resolution feature
maps. In Section 4.2, guided by our intuition, we use two
feature maps: a low-resolution map for high-level visual
understanding and a high-resolution map for detailed vi-
sual understanding. These are concatenated into a single
tensor for the Self-Attention layer, with the low-resolution
feature serving as a reference and the high-resolution fea-
ture indexed using 2D Spatial Indexing to generate tempo-
ral features. Ablation results in Table 3 show that omit-
ting 2D Spatial Indexing results in a significant performance
drop due to the loss of temporal information. Conversely,
not using the reference feature before Self-Attention has a
lesser impact. The optimal performance is achieved by us-
ing the low-resolution feature as the reference and the high-
resolution feature for 2D indexing, aligning with our intu-
itive design choices.
Initial Feature Extractor’s weight contribution. This ab-

Table 3. The role of low- and high-resolution feature maps.

Reference Indexing ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑w/o Dur. w/ Dur.
P l ✗ 0.1848 0.2029 0.7070 6.3636 0.7066
Ph ✗ 0.1939 0.1925 0.7058 6.1424 0.7184
✗ P l 0.3077 0.2177 0.7927 5.0180 0.8027
✗ Ph 0.3176 0.2204 0.7985 4.9078 0.8035
P l P l 0.3129 0.2228 0.7989 4.9100 0.8060
Ph Ph 0.3221 0.2229 0.8015 5.0277 0.8058
Ph P l 0.3184 0.2210 0.8022 5.0224 0.8057
P l Ph 0.3321 0.2232 0.8076 4.8831 0.8089

Table 4. Ablation study of choosing initial weight.

Inital Weight ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑w/o Dur. w/ Dur.
Random Init. 0.3130 0.2205 0.79224 5.0331 0.8058
ImageNet 0.3238 0.2224 0.79942 4.9723 0.8081
Ours (Self-supervised) 0.3321 0.2232 0.80762 4.8831 0.8089

lation studies the effect of the initial weight for the Feature
Extractor(Section 4.1), shown in Table 4. In conclusion, us-
ing ImageNet checkpoint can give a decent performance.
But with a better checkpoint, the performance is higher.
This shows the robustness of our architecture.

6. Conclusion
This paper addresses two key challenges: ambiguous fix-

ations in existing eye-tracking datasets and the absence of a
finding-aware radiologist’s scanpath model. Drawing inspi-
ration from visual search datasets in general domains, we
align findings with fixations, manage fixation durations us-
ing a radius-based heuristic, and constrain fixations on dura-
tion to produce the first finding-aware visual search dataset,
GazeSearch. Our dataset reflects two key properties of vi-
sual search behavior: #1 late fixations tend to converge on
decisive regions of interest, and #2 fixations within objects
of interest are typically longer in duration compared to those
outside. We then propose ChestSearch that utilizes self-
supervised training to obtain a medical pretrained feature
extractor and a query mechanism to select relevant fixations
for predicting subsequent ones. The extensive benchmark
shows ChestSearch ’s ability to generate radiologist-like
scanpaths, serving as a strong baseline for future research.

Discussion: Our work impacts the behavioral vision
literature in the medical domain, where (i) modeling and
replicating radiologists’ behavior has not been explored,
(ii) understanding the understanding of finding-aware visual
search and their integration with Deep Learning remains
poorly understood [45]. These are critical for advancing
diagnostics in radiology, enhancing decision-making pro-
cesses, and enabling the future development of collabora-
tive interactions between radiologists and AI systems.
Acknowledgments. This material is based upon work sup-
ported by the National Science Foundation (NSF) under
Award No OIA-1946391, NSF 2223793 EFRI BRAID, Na-
tional Institutes of Health (NIH) 1R01CA277739-01.
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