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Abstract

Understanding radiologists’ eye movement during Com-
puted Tomography (CT) reading is crucial for develop-
ing effective interpretable computer-aided diagnosis sys-
tems. However, CT research in this area has been limited
by the lack of publicly available eye-tracking datasets and
the three-dimensional complexity of CT volumes. To ad-
dress these challenges, we present the first publicly avail-
able eye gaze dataset on CT, called CT-ScanGaze, captured
from expert radiologists. Then, we introduce CT-Searcher,
a novel 3D scanpath predictor designed specifically to pro-
cess CT volumes and generate radiologist-like 3D fixation
sequences, overcoming the limitations of current scanpath
predictors that only handle 2D inputs. Since deep learn-
ing models benefit from a pretraining step, we develop a
pipeline that converts existing 2D gaze datasets into 3D
gaze data to pretrain CT-Searcher. Through both qual-
itative and quantitative evaluations on CT-ScanGaze, we
demonstrate the effectiveness of our approach and provide a
comprehensive assessment framework for 3D scanpath pre-
diction in medical imaging. Code and data are available at
https://github.com/UARK-AICV/CTScanGaze.

1. Introduction

Interpretability is a fundamental aspect of Computer-aided
Diagnosis (CAD) system as it supports safe, accurate, and
trustworthy patient care [47]. The integration of eye gaze
signals offers a promising approach to enhance the inter-
pretability of CAD systems [22, 38, 47, 48, 51]. Under-
standing the importance of gaze data in medical imaging
analysis, EGD [38] and REFLACX [6] are created and
shared publicly to advance chest X-rays (CXR) analysis.
As shown in Fig. la, these datasets have facilitated devel-
opments for artificial intelligent solutions, including multi-
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Figure 1. Many research directions in CAD would benefit from
the availability of gaze, report, and findings data, as is the case for
CXR (a), highlighted in green. However, some critical areas in CT
research are underexplored. For example, there are only prelim-
inary results for Explainable Report Generation and Explainable
Classification, highlighted in yellow. Especially, Scanpath Pre-
diction is underexplored and often overlooked, highlighted in red,
primarily due to the lack of publicly available datasets (b). Our
dataset offers new research opportunities to these tasks. In this pa-
per, we address the Scanpath Prediction task on CT scans (c).

label classification [38, 61, 68], report generation [38, 60],
explainable classification [55], explainable report genera-
tion [54], and scanpath prediction [66]. However, existing
medical datasets are either limited to 2D images like CXRs
or lack radiologist gaze data. The absence of public dataset
capturing radiologists’ eye gaze patterns on Computed To-
mography (CT) has left several critical tasks underexplored
in CT imaging, including scanpath prediction, explainable


https://github.com/UARK-AICV/CTScanGaze
https://arxiv.org/abs/2507.12591v1

Data Collection Raw Data

Video

DICOM files

Report Audio

_ Eye tracking
data

—
Tobii eye-
tracker

ol
g

Data Processing

Eye tracking data
(frame id, x, y,
duration)

Report Audio

STT

eport:
[00:00 > 00:28] There's
the gastrostomy tube in
the body of the stomach.
[00:28 —> 00:51]
Drainage in place

(X, ¥, z, duration) ' |around the distal
esophagus.

(x, y, DICOM
file, duration)
A

Series Number, Image T

OCR
Number, Frame ID Series Number,

Image Number,
Frame ID, DICOM fil
Series Number, Image RmeliDIDICOMfl

DICOM file pydicom Number

Figure 2. Illustration of our data collection and processing pipeline. The Data Collection panel shows the setup: a radiologist examines CT
scans on a monitor equipped with a Tobii eye-tracker and microphone for recording audio reports. The Raw Data panel displays four data
streams collected: screen recording video, DICOM files, verbal report audio, and eye gaze data. The Data Processing panel demonstrates
the data processing pipeline, which includes OCR and pydicom processing of DICOM files, integration of eye gaze data (frame ID, (x, y)
coordinates, duration) to create the final 3D gaze data. We create the final radiology report and clinical findings from the Report Audio.

diagnosis (classification and report generation), as shown in
Fig. 1b. Especially, the scanpath prediction task on CT data
is often overlooked due to missing gaze data.

The volumetric nature of CT data reveals several unique
behaviors from radiologists’ eye movement. For exam-
ple, radiologists must constantly navigate across multiple
slices and viewing planes to understand anatomical relation-
ships [2, 22]. Additionally, radiologists mentally integrate
spatial information across different depths to form a cohe-
sive 3D understanding of the anatomy and pathology [2, 21,
24]. Finally, they employ systematic search strategies to en-
sure thorough volume examination, as overlooking even a
single slice risks missing critical findings [2, 22, 67]. The
existing scanpath prediction methods [13, 50, 79] are pri-
marily designed for 2D imaging analysis. Consequently,
these 2D-based models do not account for the unique as-
pects of CT interpretation, particularly the complex volu-
metric eye movement strategies and comprehensive slice
coverage patterns exhibited by radiologists, such as mov-
ing back-and-forth between slices. Motivated by these chal-
lenges, this paper introduces the first public eye gaze medi-
cal dataset that focuses on CT scans, CT-ScanGaze. Unlike
existing medical eye gaze datasets [6, 38], CT-ScanGaze
provides 3D eye gaze data associated with every CT vol-
ume. As shown in Fig. 1¢, CT-ScanGaze provides four main
modalities: CT scans, eye gaze data (gaze map and attention
map), radiology reports, and findings.

To conduct a benchmark on the proposed CT-ScanGaze,
we tackle the scanpath prediction task. While existing scan-
path prediction methods can be extended to 3D, their orig-
inal 2D design may limit their ability to model inter-slice
navigation and spatial-temporal continuity. Moreover, scal-
ing these methods to 3D introduces a higher-dimensional
search space, making them more susceptible to the curse of
dimensionality and harder to generalize without specialized
architectural design. Therefore, we propose a transformer-
based network, CT-Searcher, that generates 3D scanpaths

for CT volumes. DL typically requires large pretraining

datasets, but CT-ScanGaze is relatively small with only 909

CT volumes compared to COCO-Search18’s 6,202 images,

potentially leading to overfitting or suboptimal training. So,

we utilize a 2D-to-3D pipeline to create a synthetic 3D gaze
dataset for the pretraining step. By pretraining CT-Searcher,
it gains the ability to process CT features and predict gaze-
like sequences, which enhances its performance on the final
scanpath prediction task. Next, we train and evaluate CT-

Searcher against current state-of-the-art scanpath prediction

models [13, 50, 79], which are adapted to process 3D inputs

and predict 3D scanpaths. Our findings indicate that CT-

Searcher successfully generates radiologist-like scanpaths,

effectively capturing both spatial coverage within each CT

slice and navigational movements across slices.
Our contributions are summarized as follows:

* CT-ScanGaze: We present the first public dataset of ex-
pert radiologist gaze during CT analysis, comprising CT
scans, eye gaze data, detailed reports, and findings.

* CT-Searcher: We introduce a 3D scanpath prediction
network that generates radiologist-like eye movement
from a CT volume. And a pretraining pipeline on syn-
thetic 3D gaze data (CT, 3D gaze) from 2D gaze data
(CXR, 2D gaze).

2. CT-ScanGaze
2.1. Data Collection

Our study collects data from a private hospital dataset of
chest and abdomen CT scans, working with two experi-
enced radiologists (10+ years experience). Data collection
setup involves a Tobii eye tracker mounted on a monitor
to track gaze data and a microphone to record audio re-
ports. Calibration is performed before each session, with
Tobii Pro Lab software managing the eye-tracking data and
screen recordings. CT scans are viewed using OHIF viewer
integrated with OHIF-Orthanc server, providing necessary
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Figure 3. Examples from our dataset. Three CTs are reviewed and concluded with radiology reports as shown in the Reports column
on the right. The Temporal Slice Navigation shows how slice navigation change over time. We can observe that radiologists often scan
through all slices and go back-and-forth for suspicious areas. In the middle column Fixation Heatmap, we show some slices in the CTs.
The heatmap represents all fixations viewed on that slice. For example, if in the first view they only see the left side, and in the second
view they see the right side, the visualized heatmap shows fixations on both sides.

tools, e.g. contrast window control, for radiological analy-
sis. We organize the setup as in Fig. 2 (left). Our radiolo-
gists perform their natural reading process of every CT scan
exactly like they do in clinical practice. For example, Smm
images are sufficient for many pathologies. It is impractical
for radiologists to review too many images in the thin series.
Thin series are used for troubleshooting when radiologists
need to examine certain details. Therefore, our CT scans
vary in slice thickness (1-5 mm) to match this practice.

2.2. Data Processing

Each data collection session yields four data streams: video
recording of radiologists’ CT reading session, DICOM files
of the CT scan, audio recording report, and eye gaze data.
As shown in Fig. 2 (right), we process these streams to cre-
ate through three main steps: Spatial Mapping, Spatiotem-
poral Mapping, Radiological Report & Findings Extraction.
Fig. 3 shows 3 examples being viewed by our radiologists.

Spatial Mapping. We extract individual frames from ses-
sion videos and use Tesseract OCR [63] to identify series
and slice numbers from the bottom-left text, with manual
correction when needed. This creates frame-to-DICOM
mapping pairs (Fig. 2).

Spatiotemporal Mapping. The eye tracker records time
(ms), screen coordinates (z,y), and fixation duration ().
Each timestamp is mapped to a frame ID using the video’s
frame rate (25 FPS). Using frame-to-DICOM pairs, we map
gaze data to DICOM files to obtain (DICOM ID, (x,y,t))
pairs. Since each DICOM represents a CT slice number, we
transform fixations into a list of 4-tuples (z, y, z,t), where
z is a slice number.

Radiological Report & Findings Extraction. We use
Google’s Speech-to-Text ‘medical dictation” model [14] on
the recorded audio to generate a textual report of the radiol-
ogist’ verbal interpretation for each CT scan. From these re-
ports, we use SARLE [20], a specialized labeler for extract-
ing findings from CT reports, to extract the corresponding
radiological findings.

2.3. Dataset Statistics

CT-ScanGaze contains 909 CT scans, each accompanied
by: scanpath, a radiology report, and findings. We have a
total of 131,618 CT slices, 4,772 minutes of scanpath data,
and 9,332 extracted findings. Due to the original gaze data
containing dense and complex scanpaths with sequences av-
eraging 543 fixations (and reaching up to 2,708 fixations per
CT), we employ a simplification algorithm from the Mul-
tiMatch toolbox [18] to make the data more manageable
while preserving essential gaze patterns. This process re-
duces sequences to an average of 222 fixations with a max-
imum of 1,507 fixations. Both original and simplified ver-
sions will be made available. We recommend the reader to
see Appendix A for more statistical details and Appendix H
for a discussion on the gaze simplification algorithm.

2.4. Scientific Benefits

This dataset represents a valuable resource for the medical

imaging and computer vision communities:

¢ Benchmark for 3D Scanpath Prediction: CT-ScanGaze
serves as a benchmark for predicting visual search pat-
terns in 3D medical volumes, addressing difficulties



unique to volumetric imaging that existing 2D-focused
datasets do not cover.

¢ Advancement of Explainable AI: By linking radiolo-
gists’ gaze with radiology diagnosis, CT-ScanGaze sup-
ports research in explainable report generation and classi-
fication, enhancing insights into the connection between
visual attention and diagnostic reasoning. This research
area is actively explored in 2D medical imaging analysis
by various researchers [0, 32, 38, 57, 70].

In addition, we believe CT-ScanGaze can be used in other

scenarios such as study of radiologists’ gaze behavior [22],

advancement of general 3D scanpath prediction, radiology

training [32, 38, 70], and collaborative CAD [39, 51, 53].

3. Problem Statement: 3D Scanpath Prediction

In this work, we address the 3D scanpath prediction task on
CT scans. Given a CT volume V' € R¥XWxD ' our goal
is to predict a sequence of N fixations {p1,pa,...,DN}-
Each predicted fixation p; = (&, %, 2:,%;) should mini-
mize its deviation from the ground truth fixation sequence
{p1,p2,...,pN}, Where each p; = (z;,y;,2i,t;) repre-
sents the 3D spatial location (x;, y;, 2;) and duration ¢; of
a radiologist’s gaze point. Our model aims to capture both
the spatial patterns and temporal dynamics of expert visual
search behavior in volumetric medical imaging.

4. CT-Searcher

The overall architecture of CT-Searcher is depicted in
Fig. 4. First, a Feature Extraction module takes a CT
volume V" and produces suitable 3D-aware representations
(Sec. 4.1). Then, a Transformer Decoder uses a set of learn-
able queries to attend on the 3D-aware presentation and cre-
ates appropriate decoded features for decoding our desired
outputs (Sec. 4.2). Finally, the latent features go through a
Spatial Prediction module to produce 3D probability maps
(Sec. 4.3) and a Duration Prediction module to produce du-
rations (Sec. 4.4). All modules in CT-Searcher are trained
jointly with losses defined in Sec. 4.5.

4.1. Feature Extraction

Given an input CT volume V € RHXWXD e first ex-
tract visual features F' € RH XW'xD'xC ygino a visual
encoder, where H’', W', and D’ are the reduced spatial
dimensions and C' is the feature dimension. These fea-
tures are then projected into a compatible representation
Z = MLP(cc(F, 7)) € REXPm for the Transformer En-
coder by a Multi-Layer Perceptron (MLP), where cc(+, -) is
a concatenate operation, 7 is a special learnable token rep-
resenting ‘stop’ fixation, D,, is the transformer hidden di-
mension and L = H' x W’ x D" 4 1. To incorporate spatial
information, we adapt the 2D sinusoidal positional encod-
ing [8] to a 3D version. For each dimension (z,y,2) in a

3D volume, we generate position embeddings using differ-
ent frequency bands:

log(T)
d/2
where 7' = 10000 is the temperature parameter and d =

D, /3 is the embedding dimension per axis. For each spa-
tial position pos along each axis, we compute:

wk:exp<—k >, k=0,....,d/2—-1 (1)

PE,.is(pos) = (sin(pos - wp), cos(pos - wp), - . .,
sin(pos - wn_1), cos(pos - wn_1)) (2)

where N is the maximum length of fixation, axis €
{z,y, 2} and positions pos are normalized to [0, 27]. The
final encoding PE(x, y, z) concatenates these components:

PE(2,y,2) = [PE,(x); PE,(y); PE.(2)] € R" (3)

We apply 3D positional encoding on only the spatial tokens
H' « W' % D' of Z and pass Z to a Transformer Encoder
that composes suitable 3D-aware representations F(Z) €
REXDPm for the Transformer Decoder in the next step.

4.2. Transformer Decoder

Before going through Transformer Decoder, we apply 3D
positional encoding again on E(Z) to retain the 3D spa-
tial information. Then, a Transformer Decoder D(-) uses
N learnable gaze queries Q € RV*Pm to attend to rel-
evant features in E(Z) to produce decoded features R =
D(Q,E(Z)) € RN*DPm,

4.3. Spatial Prediction

The objective of Spatial Prediction module (SP) is to gen-
erate 3D fixation maps that represent the probabilistic dis-
tribution of 3D fixation coordinates over time and the the
likelihood of sequence termination. The output of the trans-
former’s decoder R € RV*Pm is projected into a fixation
embedding by a Fully-connected (FC) layer, which is then
convolved with the encoded feature map E(Z) and a soft-
max layer to get the 3D spatial distribution for all fixations
Y € [0, 1]VxL:

Y = softmax(FC(R) ® E(Z)"), “4)
where ® denotes the matrix multiplication.
4.4. Duration Prediction

The objective of Duration Prediction module (DP) is to gen-
erate fixation durations that reflect the probabilistic distri-
bution of fixation durations over time. Here, we use the
re-parameterization trick [19] on the encoded features R to
regress them into mean values p; and log-variances \;:

pe = MLP,, (R), )\, = MLP,,(R) (5)
t = s + € - exp(0.5);), (6)
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Figure 4. CT-Searcher processes CT scans V' to predict 3D scanpaths. Initially, a 3D visual encoder within the Feature Extraction
module extracts voxel features F'. These features with a special ‘stop’ token are then transformed into Z by an MLP and combined
with 3D positional encoding P E to incorporate spatial information. The Transformer Encoder subsequently composes suitable 3D-aware
representations from Z. A Transformer Decoder then uses a set of learnable queries @ to attend to these 3D-aware representations and
generate decoded features R for the desired outputs. To prevent the loss of 3D spatial information, we reapply the 3D positional encoding
before feeding the 3D-aware representations into the Transformer Decoder. The decoded features R are then processed by the Spatial
Prediction to produce Y, including 3D fixation maps and a ‘stop’ probability. R is also processed by the Duration Prediction Head to
estimate fixation durations ¢ over time. Each ¥ has H = W % D + 1 elements, where H * W % D tokens represent the 3D fixation map and
one special element, embedded from token 7, represents ‘stop’. In the final Y of this figure, the special token has the highest probability
and is likely to be chosen in sampling, signaling that the model predicts fixation stops at the N'" fixation.
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v

where ¢, ~ A/(0, 1) is a noise term that give our predictions The output of DP module is a scalar, making it suitable
a probabilistic characteristic. for a regression objective. We observe that the L loss per-
4.5. Losses forms effectively in our scenario.
To model the probabilistic nature of human fixations, we 1 Ny .
use two complementary loss functions. For the SP, which L= N Z [t —tillx ©)
generates 3D fixation probability maps, we use Cross En- =t
tropy loss between the predicted distribution Y; and ground where ¢; is the ground truth duration at step . The final loss
truth fixation map Y; € [0, 1]%s¢ at each step i: combines both terms:
1 N Le . L=2L+ Lo (10)
Loo= 3 33 Vil og Vi) )
i=1 =1 4.6. Pre-training CT-Searcher
where Ly, = H * W x D + 1 are the resolution of the Due to the high complexity of 3D scanpath prediction, we
ground truth volumes. Y; is interpolated to same shape Y; € find that pretraining CT-Searcher before training on CT-
RH*W*D+1 pefore computing loss. The i-th ground truth ScanGaze is necessary to enhance its ability to process CT
3D map U; is initialized as zero, with the fixation location features and predict fixation-like sequences.
(z,y,2)as 1: First, we combine the eye gaze data from EGD [38] and
REFLACX [6], which brings more than 3,000 pairs of CXR
o 1 ifd =z,y =y,2/ =2 and fixations. We also remove invalid fixation data de-
Uiy, 2) = {0 otherwise ®) " scribed by the authors [6, 38] of EGD and REFLACX.

Secondly, we use a CXR-to-CT method [40] to convert
where ' < Wy’ < H,z' < D. We use 1-hot ground-truth all CXRs to CTs. To transform 2D gaze points into 3D
Y framing as classification task, and CTSearch predicts dis- coordinates, we process each normalized 2D fixation set
tribution Y with softmax in Eq. (4). Because N is fixed, we {(zi, i, ti) } 1y, where z;, y; € [0, 1] represent normalized
use padding on sequences with length less than N and set coordinates in the CXR image plane (with (0, 0) at the top-
the stop token 7 to be 1 and U; = 0, otherwise 7 = 0. The left corner and (1, 1) at the bottom-right corner), and ¢; is
ground truth heatmap is Y; = cc(U;, 7). the fixation duration. We perform the following steps: flip



the « dimension using 1 — x; to account for the right-to-left
reading pattern in CXR; set the middle slice position as 0.5
(where 0 represents the first slice and 1 represents the last
slice in normalized coordinates); and map y; directly to the
slice dimension while preserving the normalized scale. The
middle slice position (0.5) is chosen because radiologists
exhibit a center bias when reading axial slices. This pro-
cess transforms the 2D fixation set {(z;,y;,t;)}1, into a
3D fixation set {(1 —x;, 0.5, y;,t;) }_, with approximately
3,000 samples.

Finally, we augment the data during pretraining by sam-
pling fixations from a Gaussian distribution with o of one
degree of visual angle, which fluctuates coordinates in the
first and second dimension. This follows the widely ac-
cepted assumption [43] that fixations follow a Gaussian dis-
tribution. We emphasize that this conversion process should
only be used during pretraining due to the inherent domain
gap between 2D and 3D imaging. We provide additional
synthetic visualization in Appendix B.

5. Experiments

5.1. Experimental Details

Implementation Details. CT-Searcher uses Swin UN-
ETR [29] encoder with 96 x 96 x 96 input window. Due
to computational constraints, we use a frozen pre-trained
Swin UNETR checkpoint on LIDC-IDRI [3]. The trans-
former has 6 encoder/decoder layers, 8 attention heads, and
hidden size of 768. All MLPs in CT-Searcher have two lay-
ers, ReLLU activation, and 512 hidden dimension. The CT-
Searcher is implemented in PyTorch. We use AdamW [46]
optimizer with initial learning rate of 1e~* and weight de-
cay of 0.01. We train and evaluate all methods on the sim-
plified version (Sec. 2.3) of CT-ScanGaze. We pre-train CT-
Searcher (Sec. 4.6) for 50,000 iterations with a batch size of
8, and we then fine-tune CT-Searcher on CT-ScanGaze for
20 epochs with N = 400 fixations. For more implementa-
tion details, please refer to Appendix C.

Evaluation Metrics. We benchmark on two aspects:
scanpath-based metrics (SM [16], MM [18], SED [7, 27])
and spatial-based metrics (CC, KLDiv, NSS [13, 30]).
All metrics are adapted for 3D scanpath prediction (Ap-
pendix D). We run 5-fold cross-validation and report the
scores with 95% confidence intervals.

Baselines. We evaluate CT-Searcher against leading scan-
path prediction methods including PathGAN [4] Gaze-
former [50], GazeformerISP [13] and HAT [79]. To bench-
mark these 2D methods on 3D gaze data, we replace the
feature encoder of PathGAN, Gazeformer, GazeformerISP,
and HAT to Swin UNETR encoder. We replace 2D posi-
tional encoding in Gazeformer, GazeformerISP, and HAT
to our 3D positional encoding. Because Gazeformer has
two heads for predicting the 2D coordinates and one head

for predicting the duration, we only add a head to predict
the slice number. In HAT and GazeformerISP, we alter their
spatial decoder from generating 2D fixation heatmaps to 3D
fixation heatmaps. For remaining modules, we follow their
original implementation, for example we use ROBERTa [45]
for task embedding of Gazeformer and GazeformerISP.
More implementation details on 3D adapted scanpath pre-
diction baselines are in Appendix E.

5.2. Qualitative Results

We present qualitative results in Fig. 5 to demonstrate the
effectiveness of our proposed method. The results reveal
clear performance differences across evaluation aspects.
In the temporal slice navigation plots (Fig. 5, left), CT-
Searcher captures similar temporal dynamics to the ground-
truth, while baseline methods (GazeformerISP and HAT)
exhibit erratic, high-variance patterns. Notably, the

show that CT-Searcher replicates the non-linear be-
havior characteristic of experienced readers, who frequently
navigate back and forth through the volume to revisit sus-
picious regions. The fixation heatmap visualization (Fig.
5, right) demonstrates that CT-Searcher produces more ac-
curate attention distributions compared to other methods.
These qualitative findings confirm that our approach suc-
cessfully replicates the complex visual search patterns of
radiologists during CT interpretation, representing a signif-
icant advancement in 3D medical scanpath prediction. We
provide additional qualitative results in Appendix F.

5.3. Quantitative Results

Tabs. | and 2 demonstrates the significant challenges in
3D scanpath prediction. CT-Searcher achieves consis-
tently better performance across all metrics compared to
existing approaches. The earliest method, PathGAN, per-
forms poorly across all metrics, with particularly low Scan-
Match (0.0118) and saliency scores (CC: 0.0349). Re-
cent transformer-based approaches show improvement but
face various limitations: HAT struggles with limited train-
ing data (ScanMatch: 0.0171), Gazeformer’s separate co-
ordinate prediction via three MLPs causes consistency is-
sues affecting saliency metrics (KLDiv: 23.332), and Gaze-
formerISP underperforms on CT-ScanGaze due to its spe-
cialized and complex architecture. CT-Searcher demon-
strates superior performance with significant improvements
in ScanMatch (0.1466), MultiMatch position (0.7859) and
duration (0.5003) scores, and saliency metrics (CC: 0.1706,
KLDiv: 3.645), indicating better capture of radiologists’
gaze patterns. These results highlight the effectiveness of
our approach and represent a substantial advancement in
modeling expert visual search behavior for CT.
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Figure 5. Qualitative comparison of our method and other SOTA methods, HAT and GazeformerISP. The Temporal Slice Navigation
column shows the predicted scanpath over time, with the y-axis representing slice numbers (out of 89 total) and the x-axis showing fixation
indices. For example, the ground truth has 105 fixations, with fixations move through depth from the earliest to the last slices. The Fixation
Heatmap columns present the fixation heatmaps, illustrating regions of interest from which the corresponding gaze positions are sampled.
The visualized CT slices for these heatmaps are selected between slice numbers 40 and 50. We observe that CT-Searcher can capture the
navigation pattern of radiologists. Especially, the indicates that the back-and-forth scanning behavior of radiologists has been
successfully captured by CT-Searcher.

Table 1. Comparison of scanpath-based metrics between our CT-Searcher and existing models adapted to 3D data. (Appendix E).

ScanMatch 1 | MultiMatch 1

Method ‘ ‘ SED |

‘ w/o Dur. w/ Dur. ‘ Vector Direction Length Position Duration ‘
PathGAN [4] 0.0118+0.002  0.0649+0.005 | 0.82774+0.023 0.3194+0.015 0.6786+0.031 0.6559+0.028 0.2959+0.018 | 663+42
HAT [79] 0.0171+0.003 - 0.8103+£0.019 0.3178+0.014 0.652240.029  0.629540.025 - 307+£28
Gazeformer [50] 0.0619£0.005 0.0718+0.006 | 0.8653+£0.021 0.3012+0.016 0.8601+£0.035 0.6492+0.027 0.3254+0.019 | 279+25
GazeformerISP [13] | 0.0828+0.007 0.0711£0.006 | 0.8831+0.024 0.3060+0.015 0.8044+0.033  0.7354+0.031 0.3375+0.020 | 238+21
Ours CT-Searcher ‘ 0.1466+0.009  0.1170+0.008 ‘ 0.9216+0.026  0.4151+0.018 0.8783+0.036 0.7859+0.033  0.5003+-0.024 ‘ 174+£18

5.4. Cross-radiologist Evaluation

To assess potential learning bias toward a single radiolo-
gist’s style (as CT-ScanGaze is collected from only two ra-
diologists), we conduct a cross-radiologist evaluation. Us-
ing the same trained checkpoints from our 5-fold cross

Table 2. Comparison of spatial-based metrics between different
scanpath prediction models.

Method | Saliency

| cct KLDiv | NSS +
PathGAN [4] 0.0349+0.017 25.6024+1.832  0.1343+0.021
HAT [79] 0.0914£0.034  15.493+1.245 1.0676+0.089
Gazeformer [50] 0.0855+0.044  23.3324+1.756  0.5005+0.042
GazeformerISP [13] | 0.1104+0.021  5.023+0.428  0.7703+0.065
Ours CT-Searcher ‘ 0.1706+0.016  3.645+0.312  1.1422+0.095

validation that produce the results in Tabs. | and 2, we
compute separate scores for test sets containing only the
first or second radiologist’s ground truth data, as shown in
Tabs. 3 and 4. The differences in scores between the two
radiologists are insignificant, leading us to conclude that
CT-Searcher successfully learns general scanpath patterns
rather than overfitting to an individual radiologist’s style.

5.5. Ablation Studies

We conduct comprehensive ablation studies to validate each
component of our framework. We provide additional abla-
tion study on CT Visual Encoder backbone in Appendix G.
Impact of 3D Positional Encoding (3D-PE). 3D-PE en-
hances the model’s ability to capture positional relation-
ships across height, width, and depth. As shown in Tab. 5,



Table 3. Performance of our proposed CT-Searcher on different radiologists on scanpath-based metrics.

Method ‘ ScanMatch 1 ‘

MultiMatch 1

‘ w/o Dur. w/ Dur. ‘ Vector

Direction Length

| SED |

Position Duration ‘

Radiologist #1 | 0.14994+0.010 0.121440.009 | 0.9087+0.025 0.4023+0.019 0.8888+0.035 0.8001+0.034 0.5110+0.023 | 182£19

Radiologist #2 | 0.14314+0.008 0.1124+0.007 | 0.9339+0.027 0.4273£0.017 0.8673£0.037 0.7712+0.032  0.4891+£0.025

166117

Both 0.1466+0.009 0.1170+0.008 | 0.9216+0.026 0.41514+0.018 0.8783+£0.036 0.7859+0.033  0.5003+0.024 | 174+18

applying 3D-PE improves our model performance across
all metrics. Comparing rows #1 and #2 reveals substan-
tial improvements when adding 3D-PE without pretraining,
while comparing rows #3 and #4 demonstrates that 3D-PE
remains crucial even with pretraining in place. The dramatic
improvement in KLDiv from 7.526 to 3.645 between rows
#3 and #4 highlights how 3D-PE enhances spatial aware-
ness in our volumetric predictions. In conclusion, 3D-PE
provides essential spatial context for volumetric data pro-
cessing, resulting in substantial performance improvements
across all metrics regardless of whether pretraining is used.
Impact of Pre-training Step (Pre). Pretraining often ben-
efits deep learning models by establishing helpful inductive
biases [75]. Given the limited size of our real CT dataset,
direct training alone may lead to suboptimal performance.
As shown in Tab. 5, our experiments demonstrate that in-
corporating a pretraining step further improves model per-
formance. When comparing rows #2 and #4, we observe
that adding pretraining to a model with 3D-PE further en-
hances performance, with improvements in mSM (0.1275
to 0.1318), mMM (0.6883 to 0.7002), SED (184 to 174),
and KLDiv (5.194 to 3.645). These gains appear across all
evaluation metrics, confirming the value of pretraining.

6. Related Work

Eye Gaze Datasets. The proliferation of eye gaze datasets
in the general visual domain [10, 23, 25, 28, 36, 52, 69,

Table 4. Performance of CT-Searcher on different radiologists on
spatial-based metrics.

Method ‘ Saliency

\ cCct KLDiv | NSS +
Radiologist #1 | 0.1901+0.017 3.388+0.293  1.209-+0.101
Radiologist #2 | 0.1503+0.014 3.912+0.331  1.07240.089
Both 0.1706+£0.016  3.6454+0.312  1.14240.095

Table 5. Ablation study on the impact of each component. mSM
and mMM denote for ScanMatch and Multimatch, respectively.

Pre 3D-PE mSM 1 mMM 1 SED | KLDiv|
X X 0.0207+0.011 0.6034+0.031 252423 20.958+0.902
X v 0.1275+0.005 0.6883+0.022 184+18 5.194+0.523
v X 0.0632+0.019 0.6562+0.019 189+12 7.526+0.616
v v 0.1318+0.009 0.7002+0.027 174+18 3.645+0.312

74, 76, 80] reflects growing interest in understanding hu-
man visual behavior. These datasets span diverse sce-
narios, ranging from multi-target search tasks [28] to fo-
cused single-category search [25, 80]. Notable examples
include COCO-Search18 [76] with its extensive object cat-
egories and datasets incorporating Visual Question Answer-
ing paradigms [10]. While the general domain has seen sub-
stantial progress, medical eye gaze datasets remain limited
in scope. Current medical datasets concentrate primarily on
2D modalities, particularly chest X-rays, as exemplified by
EGD [38] and REFLACX [6]. The absence of 3D medical
eye gaze datasets represents a significant gap in the field.
To address this limitation, we present the first comprehen-
sive eye gaze dataset for CT scan analysis. CT-ScanGaze
provides essential data for advancing research in volumet-
ric medical image analysis and understanding expert visual
search patterns in 3D medical contexts.

Scanpath Prediction. Early approaches to scanpath predic-
tion primarily focused on sampling fixations from saliency
maps [34,49, 71, 73]. The field has since witnessed remark-
able progress [1, 5,9, 11-13, 15, 17, 26, 31, 35, 41, 50, 56,
58, 59, 64, 65, 72, 7679, 81], particularly through the in-
tegration of deep neural networks [12, 17, 37, 42, 50, 59,
65, 76-78], reinforcement learning [12, 76, 77], and trans-
former architectures [13, 50, 59, 79]. These advances have
substantially enhanced our understanding of temporal atten-
tion dynamics. However, none of previous approaches have
been designed for Computed Tomography. To address this
limitation, we propose a transformer-based method, CT-
Searcher, specifically designed for scanpath prediction on
CTs.

7. Conclusion

This paper introduces CT-ScanGaze, the first public CT
eye gaze dataset, along with CT-Searcher as the first CT
scanpath prediction baseline. Experiments show that CT-
Searcher works well and marks an important breakthrough
in how we can model the way experts visually search
through complex 3D medical images.

Acknowledgments. This material is based upon work sup-
ported by the National Science Foundation (NSF) under
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Supplementary Material

Ethical Statement

This research follows all relevant ethical guidelines for
medical research. All patient data used in this study was
properly anonymized and de-identified following HIPAA
guidelines. The radiologists who participated in the eye-
tracking study provided informed consent. No personal or
identifying information is included in the dataset or results.
Our study aims to augment, not replace, clinical expertise
and maintains the central role of human medical profession-
als in diagnostic decisions.

Summary

The appendix is organized as follows:

* Appendix A describes additional dataset statistics includ-
ing gaze data split, number of slices distribution, and du-
ration of data collection recording videos.

* Appendix B presents additional visualizations of our syn-
thetic training data.

* Appendix C provides additional implementation details.

* Appendix D describes the 3D scanpath similarity metrics.

* Appendix E describes implementation details of baseline
methods adapted for 3D scanpath prediction.

* Appendix F provides additional qualitative results and vi-
sualizations.

* Appendix G compares different CT Visual Encoder back-
bones.

* Appendix H discusses the MultiMatch simplification al-
gorithm and analysis.

* Appendix [ discuss the broader impact of our works.

A. Additional Dataset Details
A.1. Gaze Data Splits

Our dataset consists of 909 CT-gaze pairs, split into train-
ing, validation, and test sets with a ratio of 70:10:20 respec-
tively. This translates to:

* Training set: 636 pairs

* Validation set: 90 pairs

o Test set: 183 pairs

A.2. Radiological Finding Distribution

CT-ScanGaze has a total of 9,332 findings with 60 unique
finding names. The distribution of our dataset is shown in
Fig. L.

A.3. Number of CT Slices

Fig. II shows the distribution of slice counts for all CT
volumes. While all CT slices have a fixed resolution of
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512 x 512 pixels in the axial plane, the number of slices
varies across volumes with a total number of slices is
131,618 and 186 slices per CT in average.

A .4. Recording Duration

In our dataset, we prioritize maintaining natural workflow
by allowing radiologists to read CT scans following their
standard clinical practice. Table I summarizes the duration
statistics of our video recordings.

Table I. Recording Duration Statistics.

Duration (minutes)

Total recording time 4722
Average session time 5.36
Minimum session time 1.27
Maximum session time 9.68

A.5. Additional Visualization of CT-ScanGaze

We visualize a CT volume with its eye tracking data from an
alternative point of view, showing all scanpaths across slices
in Fig. I1I and temporal navigation patterns in a line chart in
Fig. IV. To create Figs. III and IV, we select a CT volume
such that its fixation sequence has only 48 unique slices (48
unique z values) to maintain the simplicity of the visualiza-
tion. An animated video is provided, named vis_gt .mp4.
The observed scanpath pattern demonstrates a natural pro-
gression from peripheral regions inward to areas of diag-
nostic significance. The timestamped report is:

[00:00.000 ——> 00:29.960] there’s a left

upper chest pacemaker or ICD

29.960 --> 00:40.240] with leads in the
right atrium right ventricle and a

pericardial lead along
40.240 ——> 00:43.240]

ventricle

43.240 ——> 00:57.960] there are no

enlarged axillary or supraclavicular

lymph nodes

57.960 —=> 01:19.320] mildly enlarged

paratracheal lymph nodes are present

there’s a mildly enlarged

19.320 -—> 01:28.320] large lymph node

in the anterior mediastinum the left

[00:

[00: the left

[00:

[00:

[01:

ventricle appears

128.320 ——> 01:34.680] mildly dilated
with fatty metaplasia in the left
ventricular apex and
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Figure 1. Extracted radiological finding histogram. The y-axis represents the findings. The x-axis represents the occurrence frequency
(number of samples). From SARLE [20], we extract a total of 9,332 findings with 60 unique finding names.
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Figure II. Number of slices histogram. The y-axis represents the
number of slices. The x-axis represents the occurrence frequency
(number of samples). CT-ScanGaze has 131,618 slices in total and
186 slices per CT volume in average.

[01:34.680 ——> 01:43.320] interventricular
septum there’s no pericardial effusion
the great vessels

43.320 ——> 01:49.920] are normal in
diameter there’s mild aortic
atherosclerotic calcification

:49.920 ——> 01:55.920] there is a stent
in the LAD

:01.720 —=> 02:04.720] there’s no
pleural effusion

04.720 —-> 02:19.840] there 1is
cholelithiasis a low density nodule is
present in the left adrenal

19.840 --> 02:25.800] gland likely
representing an adenoma there’s a
calcified granuloma in the

:25.800 ——> 02:28.800] spleen

[01:

[02:

[02:
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[02:34.720 ——> 02:37.720]
pericardial effusion
37.720 -=> 02:40.720]
pericardial effusion

there’s no

[02: there’s no

[02:40.720 -=> 03:06.200] a small right
pneumothorax is present
[03:10.720 ——=> 03:17.720] the trachea and
central airways are clear
[03:17.720 —=> 03:31.720] a calcified
granuloma is present in the right upper
lobe
[03:31.720 ——=> 03:38.720] a small area of
ground glass opacity is present in the
right lower lobe
[03:38.720 —-=> 03:50.720] there’s a right
lower lobe nodule measuring
approximately 15 millimeters
[04:08.720 —-—> 04:24.440] impression number
one there’s a small right pneumothorax
number two a small
[04:24.440 ——> 04:27.840] area of ground
glass opacity in the peripheral right
lower lobe is likely
[04:27.840 ——> 04:37.440] infectious
inflammatory there may be a cavitary
component which could be the
[04:37.440 ——> 04:43.240] cause of the
right pneumothorax number three there’s
a solid right lower lobe
[04:43.240 --> 04:47.960] nodule measuring
15 millimeters the differential includes
infection slash
[04:47.960 ——> 04:50.960] inflammation and
malignancy
[04:54.360 ——> 04:57.360] number four
[04:57.360 ——> 05:00.360] mildly enlarged
lymph nodes in the mediastinum are
nonspecific
By removing the timestamps (e.g.,
[00:00.000 ——> 00:29.9601), we obtain a



Figure III. Illustration of fixation sequence across sequential CT slices, following a left-to-right and top-to-bottom order. The fixation start
from O in the top left corner. The numbered annotations indicate the order of fixation points. In this figure, we observe the radiologist’s
systematic viewing pattern: first scanning through all slices before returning to central regions for detailed examination. This navigation
pattern is also demonstrated in Fig. [V. We suggest the readers to watch vis_gt .mp4 to see the animated version of this figure.

68

% 87

Figure IV. Visualization of temporal navigation patterns from the
gaze data in Fig. II1. The scanpath reveals that the radiologist fol-
lows a systematic approach: first traversing from start to end slices,
then returning to central regions for detailed examination.
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free-text radiology report: There’s a left upper chest
pacemaker or ICD with leads in the right atrium right
ventricle and a pericardial lead along the left ventricle.
There are no enlarged axillary or supraclavicular lymph
nodes. Mildly enlarged paratracheal lymph nodes are
present. There’s a mildly enlarged large lymph node in the
anterior mediastinum. The left ventricle appears mildly di-
lated, with fatty metaplasia in the left ventricular apex and
interventricular septum. There’s no pericardial effusion
the great vessels are normal in diameter there’s mild aortic
atherosclerotic calcification. There is a stent in the LAD
there’s no pleural effusion, there is cholelithiasis. A low
density nodule is present in the left adrenal gland, likely
representing an adenoma. There’s a calcified granuloma
in the spleen. There’s no pericardial effusion. There’s
no pericardial effusion. A small right pneumothorax is
present. The trachea and central airways are clear. A
calcified granuloma is present in the right upper lobe. A
small area of ground glass opacity is present in the right



lower lobe. There’s a right lower lobe nodule measuring
approximately 15 millimeters. IMPRESSIONS. Number
one. There’s a small right pneumothorax. Number two.
A small area of ground glass opacity in the peripheral
right lower lobe is likely infectious inflammatory. There
may be a cavitary component, which could be the cause
of the right pneumothorax. Number three. There’s a
solid right lower lobe nodule measuring 15 millimeters,
the differential includes infection slash inflammation and
malignancy. Number four. Mildly enlarged lymph nodes in
the mediastinum are nonspecific.

Using CheXbert [62] to extract the 13 CheXpert find-
ings [33], we identify the following positive findings: ‘En-
larged Cardiomediastinum’, ‘Lung Lesion’, ‘Pleural Effu-
sion’, and ‘Support Devices’.

A.6. Example of CT-ScanGaze

We also provide one

example_data.zip.

e ct_id9.nii.gz isthe CT scan.

e finding_id9.csuv is the finding annotations.

e fixation_id9. json is the original fixations (with-
out being simplified).

e recorded_video_id9.mp4 is the recorded video
session.

e report_1id9.txt is the report created by speech to
text software.

example of our data in

B. Additional Visualization of Synthetic Data

Fig. V illustrates samples from our synthetic dataset, com-
prising temporal slice navigation patterns and fixation
heatmaps. Overall, the synthetic data exhibits similarities
with real eye movement for 3D, particularly in temporal
characteristics when transitioning slices along the depth di-
mension.

C. Additional Implementation Details

Due to GPU memory constraint, directly using a full CT
volume as input to extract complete feature maps and train
end-to-end is often not feasible. In our implementation, we
follow the common practice of sliding windows and merg-
ing windows. CT-Searcher uses Swin UNETR [29] encoder
with 96 < 96 x 96 input window. The output shape is reduced
to 3 x 3 x 3 with feature dimension C' = 768. With a down-
sampling ratio 7 = 32, we merge all features into a single
feature map with shape (W', H', D') = (W/r, H/r, D/r).
For technical convenience, we interpolate all feature maps
to a standardized size of 16 x 16 x 16 with C' = 768
channels, ensuring uniformity across varying feature map
shapes. This standardization is reasonable since our CT
scans have fixed dimensions of 512 x 512 in height and
width (with only depth D varying), and the feature size of
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1616 x 16 x 768 keeps the model within our GPU memory
(48 GB VRAM).

D. 3D Scanpath Metrics

Due to the complexity of 3D scanpath metrics, we describe

them at a high level and point out the modifications from 2D

to 3D. For detailed implementation, we encourage readers

to examine the source code directly:

e visual_attention_metrics.py: Contains im-
plementations of:

— Saliency metrics Linear Correlation Coefficient (CC),
Normalized Scanpath Saliency (NSS), Kullback-
Leibler divergence (KLDiv).

— String-edit-distance (SED) metric.

* scanmatch3d.py: Contains the 3D-adapted version
of ScanMatch.

* multimatch_3dgaze.py: Contains the 3D-adapted
version of MultiMatch.

D.1. Saliency Metrics

All three saliency metrics, CC (Correlation Coeffi-
cient), NSS (Normalized Scanpath Saliency), and KLDiv
(Kullback-Leibler Divergence), are based on heatmaps and
can be used directly without modification. The CC metric
is defined as:

SZS_MS
os
a G —pe
oG
e
0C(5,G) = 2k Skt (1)

\/Z,jk zjkrz,]k:

where S € [0,1]H*WXD g the saliency map, G €
{0, 1}1XWxD g the ground truth fixation map, and p and
o are mean and standard deviation. Given the fixation se-
quence {(z1,yi, 21) }Y.,, where N is the fixation length, the
ground truth map is defined as:

oo 1 GG € {2},
ijk = .
0 otherwise

Higher CC scores indicate better matching between se-
quences, with an upper bound of 1.0.
The NSS metric is defined as:

s

12)

otherwise
. S—hs g
& KZ lfO'S#O (13)
S otherwise
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Temporal Slice Navigation

Fixation Heatmap

Figure V. Visualization of our synthetic training data. The Temporal Slice Navigation demonstrates the temporal transition of slice. The
Fixation Heatmap column displays representative CT slices with corresponding fixation heatmaps.

where S is the normalized saliency map. Higher NSS scores
indicate better matching between sequences, with an upper
bound that depends on the ground truth.

The KLDiv metric is defined as:

G Sijk
Sk = _ Mur
T Xk Sigk
Gk
Gz]k - Zi)j7k Gijk (14)
KLDiv(S, Q) ZG ix log é”k
gk “ S”k +€

where € = 2.2204 x 10716 is a small constant to prevent
divide-by-zero and log-zero. Lower KLDiv scores indicate
better matching between sequences, with a lower bound of
0.0.

D.2. String-edit-distance

String-edit-distance (SED) has two main steps:
1. Converts gaze sequences into strings:

a) Dividing the 3D volume into discrete cells. In the
original 2D version, this step divides the image into
patches.

b) Assigning unique characters to each cell.

¢) Mapping fixation points to these characters in se-
quence.

2. Compares two sequences using Levenshtein distance by
counting minimum number of operations (insertions,
deletions, substitutions).
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In our 3D adapted SED, we change the step 1.a from 2D
into 3D, the other steps are left as is. Lower SED scores
indicate better matching between sequences, with a lower
bound of 0.0.

D.3. ScanMatch

Calculating ScanMatch (SM) score between predicted and

ground truth fixations consists of 3 main steps:

1. Convert fixation sequences into letter strings. This step
is similar to the first step of SED. In addition, when con-
sidering duration (ScanMatch w/ Dur.), each character
is repeated n times, where n is the duration in millisec-
onds. This repetition is not performed when duration is
not considered (ScanMatch w/o Dur.).

2. Create a substitution matrix with scores for all possible
letter pairs. The original score function uses 2D Eu-
clidean distance, which we extend to 3D Euclidean dis-
tance.

3. Sequence comparison:

a) Create comparison matrix:
e Columns: letters from first sequence
* Rows: letters from second sequence
* Cell values: costs from substitution matrix
b) Apply Needleman-Wunsch algorithm to find optimal
alignment path
c¢) Calculate normalized similarity score (0-1 scale)

We adapt to 3D by modifying both step 1 and the substi-

tution matrix calculation at step 2, replacing 2D Euclidean

distance with 3D Euclidean distance. Higher SM scores in-
dicate better matching between sequences, with an upper

bound of 1.0.



D.4. MultiMatch

Different from ScanMatch and SED, MultiMatch (MM)
measures scanpath similarity regarding shape, direction,
length, position, and duration. Higher MM scores indicate
better sequence matching, with an upper bound of 1.0 for all
aspects. Given the predicted fixations { (&, 91, 21, 1) }1¥,
and ground truth fixations {(z;,y1, 21, 1)}, , we calculate
MultiMatch scores with 3 main steps:

1. Temporal alignment:

a) Calculate how similar each element ¢ in one scanpath
is compared to each element j in the other scanpath
based on a similarity metric. Collect all pairs (i, j) to
create a similarity matrix M (4, j) between elements.

b) From M(i, j), build adjacency matrix A with con-
nection weights like a graph.

c¢) Find the shortest path from 7 to j using Dijkstra’s
algorithm.

d) Align scanpaths along shortest path.

2. For every align pair of fixation (¢, j), we compute simi-
larity across five dimensions:

a) Vector (shape): shape difference between fixation
vectors (&4, Ui, 2, 1) — (5,95, 25,t5).

b) Direction: difference in direction (angle) between
fixation vectors. We measure angles using spherical
coordinates in 3D, analogous to the original authors’
use of polar coordinates in 2D.

c) Length: difference in amplitude (length) between
fixation vectors ‘((f?l, Qi, 22', tA,L) — ((Ej7 Yjs 25, tj) ,

d) Position:: 3D Euclidean distance between fixations.

e) Duration:: difference in duration between fixations.

3. Score normalization:

a) Vector, Length, and Position scores are normalized
by volume diagonal.

b) Direction is normalized by 7.

¢) Duration is normalized by maximum duration.

E. 3D Scanpath Prediction Baselines

E.1. PathGAN

Similar to original PathGAN [4], our CT-adapted Path-
GAN architecture has two major components: a Dis-
criminator D and a Generator G. The Generator takes
a CT volume V as input and produces a fixation se-
quence G(V) = {(&i,9:, 2, t:)},. The Discrimina-
tor aims to assign low scores to N predicted fixations
(&4, Ui» 2, £5) } Y, and high scores to Ng¢ ground truth fixa-
tions gt = {(z, s, 2i, ti)}ﬁv:"{, taking both the fixation se-
quence and CT volume features as input. The PathGAN
architecture is illustrated in Fig. VI. Note that we share
a frozen Swin UNETR module between G and D during
training while optimizing other modules.

For the loss functions, we maintain PathGAN’s default
implementation using two main components: conditional
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Generator Discriminator
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LSTM & BatchNorm
Sigmoid

Figure VI. Our adapted version of PathGAN for CT scanpath pre-
diction maintains the core architecture while altering components:
the visual encoder module to Swin UNETR, Average Pooling to
3D, and predicted fixations (highlighted in blue).

GAN loss and L? loss between ground truth and predicted
fixations. Specifically, the conditional GAN loss is defined
as:

Leaan = By gi[log D(V, gt)] + Ey[log(1 — D(V, G(V))],
(15)
The L2 loss is defined as:

L1z =Eyg [lgt - G(V)|?] (16)

The final formulation of the loss function for the generator
during adversarial training is:

L=Lcan+aLlp a7

Following the original PathGAN implementation, we set the
hyperparameter o = 0.05.

E.2. HAT

The detailed adapted HAT [79] architecture is shown in
Fig. VII. Similar to HAT’s FPN visual encoder [44] that
generates features at both bottleneck and high-resolution
levels, we extract features from two Swin UNETR layers:
P1 € RH/32xW/32xD/32xC from the bottleneck layer as
low resolution feature and P4 € RH/4xW/4xD/4xC4 from
the 4*" layer of Swin UNETR’s decoder as high resolution
feature. We extend HAT’s original loss to handle 3D fixa-
tion maps and use a single query as the class query. Note
that Fig. VII shows one-step prediction because HAT pre-
dicts fixations step by step, with the working memory being
updated after each fixation heatmap prediction [79].
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Figure VII. Our adapted version of HAT for CT scanpath predic-
tion maintains most of the original architecture while modifying
key components: the Visual Encoder (Swin UNETR), 3D Position
Encoding, and prediction output (highlighted in blue). ® is matrix
multiplication.

Query

Y €
and termination probabilities 7 € [0, 1], we
compute the loss at each step :

Then, given predicted fixation heatmaps
[0 1]H><W><D

N
L= ]i];[’ﬁx (YA;,K) + Lierm (i, i) (18)

where Y; € [0, 1]#*W>*D represents the ground-truth 3D
fixation heatmap, 7; € {0, 1} is the termination label, and
N is the length of the fixation sequence. We generate Y
by applying a Gaussian kernel with sigma equal to 1 visual
angle to the ground-truth fixation map. The fixation loss
Ly is a volumetric focal loss:

(1 - ffijk)a log (YW) if Y =1
(1- Yijk)ﬂ (Yz,k)a
log (1 — qu)

Lix = H;Wlp Z;Jk
otherwise

(19)
with @ = 2 and 8 = 4. And the termination 10ss L is a
binary cross entropy loss:

Ligm = —7log (%) — (1 — 7)log (1 — 7;) (20)

E.3. Gazeformer

Our adapted version of Gazeformer for CT scanpath predic-
tion is illustrated in Fig. VIII. Besides adapting the architec-
ture to our task, we also extend the loss function to 3D. The
total loss function is defined as:

L= (Ezyzt + £val) (21)
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Figure VIII. Our adapted version of Gazeformer for CT scanpath
prediction maintains most of the original architecture while mod-
ifying three key components (highlighted in blue): replacing the
visual encoder with Swin UNETR, incorporating 3D Position En-
coding, and adding an extra prediction head for z-coordinate dis-
tribution in the Scanpath Prediction module. We use ‘freeview’ as
input for RoBERTa [45] and modify the Scanpath Prediction mod-
ule to predict three separate branches for x, y, and z coordinates.

where the coordinate regression loss is:

Loyt = 5 S0 (1 — &l + |yi — Bl + 21 — 2] + |t — i)
(22)
and the validity prediction loss is:

N
1 . .
Lyat = N ; (Vilogv; + (1 —9;) log (1 —v;)) (23)

Here, { (2, 9:, 2i, &) }jil represents the predicted scan-
path and N is the maximum predicted scanpath length.
Ny denotes the length of the ground truth scanpath
{(@i, i, 2is tz)}f\/j{ The binary scalar v; indicates whether
the i* token in the ground truth fixation is a valid fixation
or padding, while 9, represents our model’s predicted prob-
ability of token validity.

E.4. GazeformerISP

Our adapted version of GazeformerISP for CT scanpath
prediction replaces the original encoder with Swin UNETR
encoder’s bottleneck features, 3D Position Encoding, pre-
diction output and extends the loss function to handle 3D
fixation maps. The architecture is illustrated in Fig. IX.
GazeformerISP predicts and computes loss on 3D fixation
maps to represent 3D coordinates. The objective jointly op-
timizes the fixation map YZ and duration #;:

N N
L:—Zmlogffmtz;hi—@} (24)
i=1 t=
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Table II. Ablation: Comparison of backbone architectures across
scanpath metrics. Arrows (1/]) indicate whether higher or lower
scores are better. Bold values indicate the best performance.

Visual Encoder | SMT | MM 1 | SED | | KLDiv]
CT-ViT 0.1287 | 0.6934 193 3.665
Swin UNETR | 0.1318 | 0.7002 174 3.645

Table III. Fixation count comparison between the original gaze
data and the simplified gaze data.

Figure IX. Our adapted version of GazeformerISP for CT scan-
path prediction maintains most of the original architecture while
modifying three key components (highlighted in blue): the input
features, 3D Position Encoding, and prediction output. Here, [.,.]
denotes the concatenation operator, and ‘3D PE’ represents 3D Po-
sitional Encoding. Similar to HAT’s freeview mode, we employ a
single query embedding to predict fixations autoregressively.

where NV is the maximum length of fixations, Y; and ¢; rep-
resent the ground-truth fixation maps and fixation duration,
respectively. Finally, we train GazeformerISP with Self-
Critical Sequence Training (SCST) set up using ScanMatch
as reward, and the Consistency Divergence loss as origi-
nally described in [12, 13].

F. Additional Qualitative Results

Fig. X presents an additional comparison of the tempo-
ral slice navigation and fixation heatmaps across multiple
CT slices between CT-Searcher with state-of-the-art scan-
path prediction methods. CT-Searcher outperforms oth-
ers by capturing a balance between realism and variability,
avoiding excessive noise or oversimplification in the tempo-
ral slice navigation comparison. Additionally, CT-Searcher
achieves more visually faithful heatmaps compared to the
ground-truth, outperforming other approaches in detail and
accuracy. For baseline methods, we observe several limita-
tions. Some methods produce no heatmaps (N/A) in certain
positions, showing their inability to generate meaningful
outputs. Similar to PathGAN, Gazeformer covers limited
CT slices, indicating a constraint in handling 3D fixation
tasks. Both GazeformerISP and HAT can produce heatmaps
for most CT slices, however their temporal slice navigation
appears noisy and inconsistent, deviating from the ground-
truth pattern. In conclusion, our method outperforms other
approaches and mimics ground truth scanpath in both tem-
poral slice navigation and fixation heatmap generation.

G. Comparison of CT Backbone Architectures

Tab. II demonstrates the comparative performance of CT-
ViT and Swin UNETR backbones as CT-Searcher’s Vi-
sual Encoder across multiple scanpath similarity metrics:
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Version
Number of Fixations

Original
2,234,920

Simplified
954,311

Reduction (%)
57.3%

Table IV. MultiMatch similarity scores between the original gaze
data and the simplified gaze data.

Direction
0.853

Vector
0.993

Dimension
Score

Length  Position
0.989 0.944

Average
0.945

ScanMatch (SM), MultiMatch (MM), String-Edit Distance
(SED), and Kullback-Leibler Divergence (KLDiv). We
freeze both backbones during training. Tab. II shows
that Swin UNETR outperforms CT-ViT across all metrics,
achieving higher scores in pattern-based measures (SM:
0.1318 vs. 0.1287, MM: 0.7002 vs. 0.6934) and lower val-
ues in distance-based metrics (SED: 174 vs. 193, KLDiv:
3.645 vs. 3.665). Based on the empirical results, we adopt
Swin UNETR as our Visual Encoder.

H. MultiMatch Simplification Analysis

Due to the original gaze data containing scanpaths with nu-
merous fixations that are dense and complex with sequences
averaging 543 fixations and reaching up to 2,708 fixations
per CT, we employ the simplification algorithm to make this
data more manageable while preserving essential gaze pat-
terns, from the MultiMatch toolbox [18] with default set-
tings: an angular threshold of 45° and an amplitude thresh-
old of 10% of the volume resolution diagonal. This reduces
sequences to an average of 222 fixations with a maximum of
1,507 fixations. Both original and simplified versions will
be made available.

To demonstrate the effectiveness of simplification,
Figs. XI to XIII presents a comparative illustration between
original and simplified scanpaths. While radiologists’ eye
movements on a single CT slice generally focus on the im-
age center, movement along the slice dimension exhibits
more complexity. Fig. XI reveals continuous and intricate
radiologist navigation through depth. Nevertheless, the MM
simplification approach introduces only minor changes to
the movement landscape while preserving the overall pat-
tern. This consistency in pattern preservation is also evident
along the x-axis (Fig. XII) and y-axis (Fig. XIII). In sum-
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Figure X. Additional qualitative results between CT-Searcher and state-of-the-art scanpath prediction methods. N/A in a particular slice
position (column) means that the corresponding model (row) fails to predict scanpath for that slice, thus no heatmap can be created. The
heatmap images in the Fixation Heatmap column show the eye gaze fixation patterns across different CT slices. The left columns show
Temporal Slice Navigation patterns, illustrating how scanpath traverses through different slices over time.

mary, the line charts demonstrate that while significantly
reducing the number of points (Tab. III), the simplification
process maintains the essential scanpath characteristics, as
evidenced by minimal changes in MultiMatch similarity
scores across all spatial dimensions (Tab. V).

I. Discussion

Our contributions establish a foundation for volumetric
scanpath modeling. CT-ScanGaze benefits the research
communities in several ways. First, it provides a benchmark
specifically designed for 3D scanpath prediction in medi-
cal imaging, addressing limitations of 2D-focused datasets.
Second, by capturing radiologists’ visual attention patterns
during diagnosis, it enables research on the relationship
between visual search behavior and diagnostic reasoning,
advancing explainable Al in heathcare. Furthermore, CT-
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ScanGaze enables several research directions: analyzing
expert vs. novice radiologist gaze patterns, developing gen-
eralizable 3D attention models, creating radiology training
protocols based on expert viewing patterns, and designing
human-AI collaborative systems that leverage natural view-
ing behaviors. CT-Searcher demonstrates the feasibility of
modeling expert visual behavior in CT interpretation. While
our current implementation focuses on CT scans, the ap-
proach could extend to other domains requiring 3D visual-
ization expertise, such as geological analysis or industrial
CT inspection. Future work should address current limita-
tions, including expanding the dataset to encompass more
diverse pathologies, developing more interpretable models
that can explain predicted attention patterns, and evaluating
the clinical impact of these systems on diagnostic accuracy
and efficiency in real-world settings.
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Figure XI. The effect of MM simplification algorithm on the z (slice) dimension.

P .-' . ‘ '] ' : 1 m. :' .7“”_.-"7’
s W’@ﬂﬁf{ﬂmf Hﬂw %%‘M j{]ﬂﬂ _}_,‘s;-,:*' i }_fr-m H m
v‘T
snoes ﬂw i #WL Mw 1_ E‘— M JU
granm ?J”}ztﬁ%&% G T A ]
T

Simplified
Fixations

% % % 903 % 306
512 512 12 512
W | §
Ll ’ ru .o Tk,
! Eiaf m Pl ! N |
1 Lhe LU ﬁ m ‘ o :q T— -
['-:i L FF‘ h # :L_ i .1"—\-__ Ly ' £ I s ‘I._l e |
IR : I I
% a7 % 198

s19 % 175 %

Figure XII. The effect of MM simplification algorithm on the x (width) dimension.
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Figure XIII. The effect of MM simplification algorithm on the y (height) dimension.

23



	Introduction
	CT-ScanGaze
	Data Collection
	Data Processing
	Dataset Statistics
	Scientific Benefits

	Problem Statement: 3D Scanpath Prediction
	CT-Searcher
	Feature Extraction
	Transformer Decoder
	Spatial Prediction
	Duration Prediction
	Losses
	Pre-training CT-Searcher

	Experiments
	Experimental Details
	Qualitative Results
	Quantitative Results
	Cross-radiologist Evaluation
	Ablation Studies

	Related Work
	Conclusion
	Additional Dataset Details
	Gaze Data Splits
	Radiological Finding Distribution
	Number of CT Slices
	Recording Duration
	Additional Visualization of CT-ScanGaze
	Example of CT-ScanGaze

	Additional Visualization of Synthetic Data
	Additional Implementation Details
	3D Scanpath Metrics
	Saliency Metrics
	String-edit-distance
	ScanMatch
	MultiMatch

	3D Scanpath Prediction Baselines
	PathGAN
	HAT
	Gazeformer
	GazeformerISP

	Additional Qualitative Results
	Comparison of CT Backbone Architectures
	MultiMatch Simplification Analysis
	Discussion

