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ABSTRACT

Modeling gaze patterns in multiparty conversations is crucial to
build socially-aware dialogue agents and humanoid robots. How-
ever, existing approaches typically rely on visual data or focus on
dyadic settings. We propose a novel framework for social atten-
tion modeling — predicting gaze directions from linguistic and
speaker cues alone, without direct visual input. We introduce SATS5,
a speaker-aware adaptation of the T5 language model, pre-trained
using multi-task objectives that capture both span corruption and
speaker state modeling. Using a new dataset of three-party face-
to-face conversations with synchronized speech, gaze, and motion
capture data, we demonstrate that SAT5 significantly outperforms
both pretrained and RNN-based baselines in predicting gaze targets.
Our findings highlight the importance of conversational structure
and speaker dynamics in modeling social attention, and offer a
strong foundation for gaze-aware multimodal systems.
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1 INTRODUCTION

In recent years, dialogue agents, including interactive robots and
virtual agents, have become increasingly prevalent across various
domains, from customer service and healthcare to education and en-
tertainment [17]. As these systems continue to evolve, their ability
to facilitate natural and engaging communication with humans has
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become a key area of research. While early dialogue agents relied
primarily on rule-based or scripted interactions, advances in artifi-
cial intelligence, particularly in natural language processing (NLP)
and multimodal learning, have enabled more sophisticated and
context-aware conversational agents. However, achieving seam-
less and intuitive human-agent interactions remains an ongoing
challenge, particularly in multi-party conversation settings where
interaction dynamics are more complex.

Most of existing research on dialogue systems has focused on
dyadic (two-party) interactions, where conversational structure
is relatively straightforward. However, real-world conversations
often involve multiple interlocutors, such as in meetings, group
discussion, and social gatherings. Multi-party dialogues introduce
additional complexities, including managing conversational flow,
handling speaker transitions, coordinating turn-taking, and inter-
preting overlapping speech. These challenges make multi-party
interactions a more realistic yet demanding research problem, re-
quiring models that can process dynamic conversational cues and
predict interaction patterns in real time. Addressing these chal-
lenges is crucial for advancing the capabilities of conversational Al,
enabling agents to participate more effectively in group discussion
and collaborative environments.

Beyond linguistic content, nonverbal cues, such as gestures,
prosody, facial expressions, and gaze, play an essential role in struc-
turing and regulating interactions [20, 21]. These cues provide
additional layers of meaning beyond spoken words, helping par-
ticipants establish engagement, emphasis, and interpersonal align-
ment. Various speech-driven motion generation approaches have
been explored, including models for full-body gestures [35] and
hand gestures [12]. While these modalities contribute to expres-
sive communication, gaze behavior holds particular importance
in multi-party dialogue settings. Unlike other nonverbal signals,
gaze explicitly guides attention, signals turn-taking intentions, and
helps synchronize interactions. As such, understanding and mod-
eling gaze behavior is essential for creating more responsive and
context-aware dialogue agents.

Gaze serves multiple communicative functions, particularly in
regulating turn-taking [7, 19], and conveying emotions, intentions,
and cognitive states [1, 8, 30]. For example, speakers may avert their
gaze to indicate cognitive processing or signal an intention to retain
their turn [7]. Conversely, listeners often use gaze to signal engage-
ment, monitor speaker cues, and anticipate conversational shifts.
These subtle but highly informative gaze patterns are fundamental
to maintaining coherent and fluid conversations, particularly in
multi-party settings where participants must continually navigate
shifting attention, speaker roles, and social cues.
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Moreover, gaze behavior is not only reactive but also modu-
lated by speech content. Patterns, such as gaze convergence during
emphasis or divergence during hedging, can reflect underlying
communicative intent and facilitate mutual understanding [19, 26].
This tight coupling between speech and gaze highlights the impor-
tance of modeling their interplay to support naturalistic interac-
tion. Given its significance, accurately predicting and generating
gaze behavior in human-agent dialogue can greatly enhance an
agent’s naturalness, responsiveness, and social intelligence. By in-
corporating gaze-aware models, virtual agents and robots can more
effectively manage turn-taking, sustain engagement, and adapt to
conversational context, resulting in more intuitive and effective
interactions in multi-party scenarios.

In this work, building upon the T5 architecture [29], we intro-
duce Speaker-Aware T5 (called SAT5), a novel adaptation of pre-
trained language models designed for speaker-aware representation
learning. The main contributions of this work can be summarized
as follows: (1) We design a circular coordinate system to embed
speaker identity, enabling generalization across varying numbers of
speakers in multi-party settings. (2) We extend the T5 architecture
with speaker-aware embeddings and a pretraining strategy that
jointly models speaker identities and span corruption, allowing the
model to capture dynamic speaker transitions and conversational
structures beyond linguistic features. (3) We apply our adapted
model to the downstream task of gaze prediction, leveraging multi-
modal conversational data to accurately forecast eye gaze targets
in group interactions.

2 RELATED WORK

Speaker-Aware Approaches. Many research efforts have focused
on developing neural networks and pre-training speaker-aware
language models to enhance multi-party conversation understand-
ing. From the perspective of recurrent neural networks (RNNs),
researchers introduced the Multi-Party Conversation (MPC) corpus,
enabling tasks such as addressee identification and response selec-
tion using different RNN architectures [24, 27]. Similarly, Le et al.
[18] proposed the who-to-whom (W2W) architecture, which inte-
grates speaker and listener-specific gated recurrent units (GRUs),
namely the Speaker GRU (SGRU) and Listener GRU (LGRU), to
model conversational dynamics more effectively.

Recently, transformer-based architectures have demonstrated
significant advancements in speaker-aware modeling for multi-
party dialogue. Gu et al. [9] introduced Speaker-Aware BERT (SA-
BERT), an extension of the BERT model that incorporates speaker
embeddings to enhance contextual representations in dialogue sys-
tems. Later, Gu et al. [10] further extended this work by employing a
multitask learning approach to improve the overall comprehension
of multi-party conversations across various downstream tasks.

These models have proven effective in capturing discourse coher-
ence within textual dialogues by leveraging self-supervised learning
objectives. Additionally, they have demonstrated the robustness
of RNN-based architectures and the generalization capabilities of
pre-trained language models. However, a critical limitation of these
approaches is that they primarily operate on textual data alone,
overlooking the explicit temporal structures present in spoken dia-
logues, such as pauses, silences, and interruptions. In real-world
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multi-party conversations, these temporal features play a crucial
role in structuring interactions, regulating turn-taking, and manag-
ing speaker transitions. The absence of such cues limits the effec-
tiveness of text-only models in capturing the real-time dynamics
of multi-party conversations.

Gaze Prediction. Although no prior work has explicitly ad-
dressed gaze prediction in multi-party conversations, several re-
lated studies have explored gaze prediction and analysis in different
contexts, offering valuable insights that inform our approach to
modeling gaze behavior in dynamic, multi-party interactions.

A significant body of research has focused on gaze prediction
in reading tasks. Agarwal and Chatterjee [2] demonstrated that
linguistic features, such as shallow lexical characteristics, token
rarity, and token interactions, contribute to improved gaze pre-
dictions during reading, emphasizing the role of linguistic cues
in gaze modeling. Additionally, studies such as [22, 25, 33] have
showcased the effectiveness of state-of-the-art transformer models
in gaze prediction, further highlighting the benefits of deep con-
textualized representations. Despite these advancements, existing
gaze prediction models primarily focus on reading-based tasks.

Human-robot interaction (HRI) research has tackled gaze pre-
diction from visual inputs. For example, Saran et al. [31] developed
a deep-learning system that predicts referential and mutual gaze
using robot-mounted cameras, combining head-direction estima-
tion with object saliency cues to enable real-time gaze following [4].
In computer vision, Tu et al. [32] introduced HGTTR, an end-to-
end transformer-based model that simultaneously detects human
head locations and corresponding gaze targets in complex scenes,
achieving strong results on benchmark datasets. Subsequent work
such as TransGOP [34] further applied transformer-based object de-
tectors to model long-range head-gaze target relationships, while
MGTR [11] focused on mutual gaze detection in social imaging us-
ing transformer architectures. Although these visual-scene and HRI
approaches demonstrate robust gaze-target prediction, they con-
centrate on dyadic or static image settings and do not incorporate
conversational or linguistic context.

Our work bridges this gap by targeting gaze target prediction
in multi-party conversation, a dynamic, interactive domain that
merges insights from reading-based gaze prediction and visual-
scene gaze modeling. To our knowledge, this is the first study to
combine transformer-based gaze-target prediction with linguistic
and speaker-role context in a realistic, multi-person interaction
scenario.

3 DATASETS

We utilized two multi-party conversation datasets to train and
evaluate our model: (1) the AMI corpus, and (2) an InHouseDataset,
described below.

3.1 AMI Corpus

The AMI Meeting Corpus [16] is a richly annotated multi-modal
dataset of around 100 hours of real and scenario-based business
meetings recorded at multiple sites, capturing participants through
tables and personal microphones, as well as panoramic and individ-
ual cameras. The collection includes both spontaneous discussion
and structured “design team” meetings where participants assume
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Figure 1: A snapshot of our three-party conversational mo-
tion data acquisition experiment.

specific roles in a product-design task. In our study, we used this
dataset exclusively for the initial training stage, as detailed in Sec-
tion 4.

3.2 InHouseDataset

To construct an InHouseDataset, we recruited 21 volunteers from a
university campus and randomly assigned them into seven groups
of three. None of the participants was acquainted before the experi-
ment. Among them, 12 were men and 9 were women, aged between
20 and 30. The majority (70%) had a background in computer sci-
ence, and all were native English speakers. The data capture was
approved by the Institutional Review Boards.

Each group participated in three to five recorded sessions of
three-party conversations. The session durations for the seven
groups were 46 minutes 18 seconds (46’18”), 44°47”, 46’177, 42°49”,
46’317, 44’277, and 48’197, totaling 319 minutes and 28 seconds
of recorded data. For each participant, we employed Ergoneers
Dikablis Glass 3 for eye tracking, a wireless microphone for speech
recording, and an optical motion capture suit to accurately capture
movements of the head, hands, torso, and lower body.

During data collection, participants were instructed to maintain
fixed positions, forming an equilateral triangle with approximately 1
meter of separation between them. This spatial configuration aligns
with setups used in prior studies on three-party conversations
[3, 6, 13-15] and is similar to the pentagonal arrangement for five-
party interactions [26]. Figure 1 offers a snapshot of the actual data
acquisition process in action.

Participants engaged in free discussion on topics of their choice
throughout the recording sessions. To ensure precise synchroniza-
tion across multiple data sources, we used a clapperboard at the
beginning of each session. As a result, all collected data —including
3D motion capture, eye tracking, and speech — were temporally
aligned and subsequently downsampled to 30 frames per second
for consistency.

Inspired by previous research [14], we estimated an interlocu-
tor’s Direction-of-Focus (DFoc) by integrating both torso-head ori-
entation and the eye gaze direction vector (V). Specifically, given
the 3D rotational representations of the hips (Rp;ps), spine (Rs),
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and head (Rp), along with the global position of the hips (G) and
the offsets of the spine (Og), head (Op), and eyes (Og), we defined
DFoc as follows:

DFoc = GthipsOSRSOHRHOEVE (1)

To ensure the robustness of this computation, we addressed
missing or anomalous values in Vg by employing piecewise shape-
preserving cubic interpolation. Building upon the DFoc estimation,
we further introduced a higher-order feature, Focus of Attention
(FoA), which identifies the interlocutor an individual is attending
to at a given frame.

To formally represent FoA, we defined a Gaze Target Vector
(GTV) as a 1 X 3 ternary vector for each frame. This vector ef-
fectively encodes the attention focus for all three interlocutors.
Specifically, the i-th component of GTV corresponds to the index
of the interlocutor being attended to by the i-th individual at that
frame.

3.3 Segmentation

In both datasets, we sampled data at 30 frames per second (fps),
resulting in a frame duration of approximate 33 milliseconds, en-
suring alignment across all modalities. To determine the optimal
window size for training, step size for augmentation, and discrete
chunk size for maintaining a uniform representation, we analyze
the average durations of speech and silence.
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Figure 2: Count and average length of speaking sequences.
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Figure 3: Count and average length of silence sequences.

Instead of a token-based approach, we adopt a time-based predic-
tion method to effectively capture gaps and silences between words
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Figure 4: Percentages of sequences that are longer than the
thresholds.
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Figure 5: Data sampled to a discrete chunk size 5 by assigning
the majority behavior to ensure the uniform representation
across all modalities.

and sentences. Our analysis in Figure 2 and Figure 3 shows that the
average speaking duration before a speaker switch is 162 frames
(5.4 seconds), while the average silence between speech segments is
63 frames (2.1 seconds). Based on this, we set the window size to 450
frames (15 seconds) to capture sufficient conversational context, in-
cluding speech, silence, and speaker transitions. The step size is set
to 150 frames (5 seconds) to ensure an adequate number of training
instances while minimizing excessive overlap and redundancy.

Additionally, as shown in Figure 4, a discrete chunk size of 5
frames covers 97.9% of utterances, making it a suitable choice for
determining prediction frequency while mitigating erratic gaze
shifts. This approach reduces training redundancy while maintain-
ing prediction accuracy.

Furthermore, Figure 5 illustrates the final downsampled represen-
tation. To ensure consistency across modalities, we aggregate words
and speaker identities within each discrete chunk by assigning the
most frequently occurring feature in that interval. This strategy is
also applied to gaze signals, which helps reduce abrupt shifts and
enhances the robustness of the representation. The colors shown
in Figure 5 denote different speaker states—either active speakers
or silence. The implementation details of speaker embedding are
further elaborated in Section 4.2.1.
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4 SPEAKER STATE ADAPTATION

4.1 Input Representation

We define each data instance as a sequence of pairs {(T¢, SC)}gzl,

where T, denotes the text embedding of the c-th discrete chunk
and S; is the corresponding speaker embedding. Specifically, Tc
represents the embedded representation of the textual content in
the c-th chunk, obtained by passing the corresponding token se-
quence through the embedding layer of T5. This transforms discrete
token indices into continuous vectors within the T5 model’s rep-
resentational space, capturing the chunk’s semantic content. The
embedding S¢ encodes the speaker identity using a circular coordi-
nate system, where each speaker is assigned an angular position
on a unit circle and projected into the same embedding space as T
through a learnable transformation function. The combined chunk
representation is formed by chunk-wise addition of T, and S, and
is subsequently fed into the T5 encoder.

In our setup, we define an utterance window of 450 frames,
segmented into C = 90 discrete chunks, each corresponding to
5 frames of audio and aligned text. This chunk-level formulation
enables us to inject speaker context at a fine-grained temporal
resolution while maintaining alignment with downstream gaze and
dialogue modeling objectives.

Our primary goal is to develop a speaker-aware pre-trained
language model that captures both semantic and speaker-specific
information. Given an instance, the model is expected to output
embedding vectors for all 90 discrete chunks, enriching them with
the structure of the speaker identity. These embeddings can then
be fine-tuned on various downstream tasks, providing a flexible
framework that leverages both linguistic content and speaker con-
text.

4.2 Speaker-Aware T5 (SATS5)

In this work, we build upon the T5 architecture [29] to incorporate
speaker-awareness. We refer to our extended model as Speaker-
Aware T5 (SATS5). The original T5 model is pre-trained on a large-
scale text corpus, capturing general linguistic representations. How-
ever, in order to adapt T5 to our speaker-focused task, we perform
domain adaptation on in-domain corpora.

4.2.1 Incorporating Speaker Embeddings. To account for speaker
information in each utterance, we introduce a circular speaker em-
bedding system into the standard T5 input representation (see Fig-
ure 7). Specifically, each discrete chunk of text T; is paired with a
corresponding speaker embedding S., which encodes the speaker
identity as an angle € € [0,27) on a unit circle, as illustrated in
Figure 6. Given N total active speakers in the conversation and an
additional label for silent segments (i.e., no speaker), we allocate
N + 1 angular coordinates on the circle. Each label n is assigned an
angular coordinate as follows:

2mn
"= , neo1,....N (2)
N+1
Here, n = 1,..., N correspond to actual speakers, while n = 0

denotes silent or non-speech segments. This results in a spatially
uniform distribution of all speaker and non-speaker states along
the circle.
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Figure 6: Illustration of the polarized speaker distribution
assumption in settings with three, four, and five participants.
In speaker state modeling, each speaker is assigned a fixed
position on a unit circle, and an additional position—marked
by a black circle—is reserved for silent or non-speech seg-
ments. The model predicts an angle on this circle, and the
speaker state is determined by selecting the label (either a
speaker or silence) whose assigned position is the closest to
the predicted angle.

The angle 6" is passed through a learnable transformation func-
tion E that maps it to the same dimension as T5 token embeddings:

Se = Es(0"), Sc €RY, 3)

where d is the T5 embedding dimension. The resulting speaker
embedding S is then added to the token embeddings of chunk T,
forming the combined input to the T5 encoder:

T. =T, +S; 4)

This polar encoding offers two primary advantages. First, it
establishes a consistent reference frame across sessions by uni-
formly distributing roles (including silence) in a structured geomet-
ric space, which helps the model learn speaker transition patterns
and turn-taking dynamics. Second, although the layout assumes
equal angular spacing for simplicity, the framework is flexible and
can accommodate non-uniform or dynamic speaker arrangements.
In practice, the angular positions can be re-parameterized post
hoc to reflect real-world speaker locations or spatial asymmetries
without changing the model architecture.

The enriched input embeddings T, are processed by the T5 en-
coder to generate contextual representations that integrate both se-
mantic and speaker-aware cues, which are then used by the decoder
for downstream tasks such as gaze prediction or turn transition
modeling.

4.2.2  Pre-training on the AMI Corpus. We conduct pre-training us-
ing the AMI corpus, which contains conversations among varying
numbers of participants. To handle different numbers of speak-
ers, we design dynamic speaker prediction projection layers that
automatically adapt to the number of speakers present in a given
conversation. This flexibility allows SAT5 to generalize across multi-
party interactions with varying participant counts.

4.3 Multi-Task Learning Objectives

4.3.1 Speaker State Modeling. 1dentifying the speaker of each ut-
terance is crucial in multi-party conversational scenarios. To enable
the model to learn this, we propose a speaker state modeling task.
During pre-training, 15% of the speaker embeddings S; are ran-
domly selected and replaced with a special [Mask] embedding to
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prevent information leakage. The model must then predict the
original speaker identity based on the surrounding context.

The output of the model in this task is a scalar angle 0. € [0,27)
that corresponds to the predicted speaker for the c-th masked chunk.
Since speakers are encoded as angles on the unit circle, it is essential
to compare angular predictions in a way that respects circular
geometry. Direct subtraction of angles may lead to large errors
near the boundary (e.g., comparing 0 and 27 — €), so we compute a
circular distance between the predicted angle 0 and the ground
truth angle 0. using the following formula,

) -, (5)

which wraps angular differences into the interval [-x, 7). It is

éc—96+71
21

A@:((éc—ec+ﬁ)—2n-[

equivalent to computing the remainder when (B — 0 +7) is divided
by 27, and then shifting it back by z. This ensures that angular
differences are computed along the shortest path on the circle and
that the error is invariant to how angles wrap around at 0 and 2.

The speaker state modeling loss is then defined as the mean
squared error over these circular distances:

L—chez 6
m—5;(>. (6)

This formulation provides a smooth and rotation-invariant train-
ing signal, allowing the model to learn fine-grained speaker repre-
sentations on the unit circle, without being affected by discontinu-
ities at angular boundaries.

4.3.2  Span Corruption. To further enhance the model’s ability to
capture linguistic dependencies and contextual cues, we adopt the
span corruption objective from the original T5 pre-training scheme.
This objective involves corrupting certain spans of text (includ-
ing potential silences or repeated tokens) and then training the
model to reconstruct the original text. The input window w is cor-
rupted by masking multiple spans of tokens, replacing them with
sentinel tokens (special placeholder tokens like <extra_id_1>, <ex-
tra_id_2>, etc.). The model is trained to predict the missing spans
in the decoder. The loss function follows a standard autoregres-
sive cross-entropy loss over the sequence of missing tokens in the
output:

||
Lse=- log Py (t;|w’, t<;). (7)

i=1
By jointly optimizing L¢p and Lssp, in a multi-task fashion, our
SAT5 model internalizes both speaker-centric and linguistic knowl-
edge. This provides a robust foundation for subsequent fine-tuning
on various downstream applications. In summary, our proposed
SATS5 model integrates speaker embeddings into the T5 architecture
and is pre-trained on the AMI corpus to handle conversations with
varying speaker configurations. We employ a multi-task learning
framework that addresses both speaker state modeling and span
corruption. These objectives are jointly optimized by minimizing

the sum of their respective losses as:

L= (X-Cssm + -Csc~ (8)
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(b) Gaze Prediction
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Figure 7: Illustration of the input representations and model architectures: (a) Speaker-Aware Adaptation, where both token
and speaker embeddings are masked during pre-training (red arrows indicate cross-entropy computation against ground truth).
(b) Gaze Prediction, which uses the pre-trained encoder from (a).

5 GAZE PREDICTION

In this work, without loss of generality, we focus on the task of
predicting eye gaze targets in specific three-party conversational
settings, specifically to determine whether an interlocutor is di-
recting the gaze toward any of other interlocutors or looking else-
where at any particular moment. That is, the instance for the task
is {(Ty, Sn» GTVn)}n 1» With an additional GTV of the n-th discrete
chunk of a sequence.

Our proposed gaze prediction framework is built upon the SAT5
encoder model, which has been pre-trained for adaptation as de-
scribed in Sec. 4. The encoder processes input features extracted
from multimodal conversational data, capturing relevant contextual
and speaker-specific information necessary for gaze prediction.

To obtain the final gaze predictions, the encoder outputs are
passed through a fully connected (FC) layer, which transforms the
learned hidden representations into a structured 9-dimensional out-
put space. This output representation corresponds to the predicted
gaze directions of three interlocutors, where each interlocutor’s
gaze is categorized into one of three possible classes G: left inter-
locutor, right interlocutor, or none. Under the supervised training
approach on multi-class classification, we perform cross-entropy
between the original GTV and the predicted gaze vector GTV” as:

1

G
Loto == D, D, GTVnglog(GTV, ). ©)

g=1

Mz

3
]
—_

6 EXPERIMENTAL SETUP

We adopted the T5-1arge model for all our experiments. During
the pre-training of SATS5, the coefficient a for the loss function
Lssm was set to 0.5. For both SAT5 and the gaze prediction model,
ReLU was used as the activation function for all non-linear trans-
formations, while softmax was applied to all classification tasks
during cross-entropy computation. Optimization was performed
using the AdamW optimizer [23]. The training process began with
an initial 1, 000 iterations at a learning rate of 1 X 10~4, followed
by 45,000 iterations with weight decay, starting at 5 x 107>, The

batch size and dropout rate were set to 32 and 0.15, respectively.
All models were trained using a single GeForce RTX 4090 GPU.

6.1 Comparison Methods

To evaluate our approach, we compared it against several baseline
models, including both non-pre-training-based and pre-training-
based methods. Since no existing models are designed specifically
for our task, we adapt the baselines to align with our experimental
setting.

Non-pre-training-based models. Previous works, including
[18, 24, 27], have explored variations of recurrent neural networks
(RNNs), including DRNN, SI-RNN, LSTM, and GRU, which integrate
speaker embeddings into conversation modeling. These models
have demonstrated effectiveness in capturing speaker awareness
within dialogues. However, they rely solely on textual and speaker
information, without accounting for temporal gaps or silence.

To establish a baseline for non-pretraining-based approaches,
we implemented standard RNN, GRU, and LSTM models. Following
previous studies, we utilized 300-dimensional word embeddings
pre-trained with GloVe [28]. For consistency across models, we set
the hidden dimension to 300 and used a two-layer architecture.

Pre-training-based models. BERT [5] is a transformer-based
model pre-trained on large-scale text corpora using masked lan-
guage modeling (MLM) and next sentence prediction (NSP) to learn
general language representations. T5 [29] adopts a text-to-text
framework, formulating all NLP tasks as sequence-to-sequence
problems. For our comparison, we employ these two pre-trained
language models without any speaker-aware adaptation.

6.2 Metrics

To assess the effectiveness of our model, we implemented a rig-
orous evaluation framework designed to ensure both reliability
and comprehensiveness. This methodology enables a thorough as-
sessment of the model’s performance across diverse scenarios and
conversational groups.
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Figure 8: The speaker state modeling loss (L) over training
steps, averaged per 100 steps.

Token Loss
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Figure 9: The span corruption loss L. over training steps,
averaged per 100 steps.

We employed 10-fold cross-validation on the training data, a
widely used technique that enhances the robustness of model eval-
uation. This procedure systematically partitions the dataset into
ten equally sized subsets. In each iteration, nine subsets are used
for training, while the remaining one serves as the test set. To fur-
ther prevent overfitting, the training set is internally split into 80%
for training and 20% for validation. This ensures that the model is
optimized effectively before final evaluation. The cross-validation
process is repeated ten times, with each subset serving as the test
set once, ensuring a comprehensive and unbiased evaluation.

To quantify performance, we aggregated results across all iter-
ations and computed key evaluation metrics, including precision,
recall, and F-score, using a macro-averaging approach. This method
assigns equal weights to all classes or conversational behaviors,
providing a balanced and holistic assessment of the model’s overall
effectiveness.

7 RESULTS

Figure 8 and Figure 9 illustrate the effectiveness of our SAT5 model
in capturing both speaker representations and text structures, in-
cluding silences and interruptions. The steady decline in the speaker
state modeling loss over training steps indicates that the model
effectively learns to differentiate between speakers, adapting to
dynamic conversational contexts. Simultaneously, the token loss
curve reflects the model’s ability to encode textual content while
accounting for pauses and disruptions in speech, which are crucial
for modeling multiparty interactions in the real world. These results
highlight the capability of the SAT5 to integrate both speaker-aware
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and linguistic features, making it well suited for gaze prediction
and other downstream tasks that rely on nuanced conversational
dynamics.
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Figure 10: The training and validation losses of GTV Loss
(LgTv) over training steps, with average loss computed per
100 steps.

Figure 10 presents the training and validation loss curves for
GTV Loss (Lgry) over the course of training, with the average
loss computed per 100 steps. The consistent downward trend in
both training and validation losses indicates the model’s ability to
learn gaze target predictions effectively. The minimal gap between
training and validation losses suggests that the model generalizes
well to unseen data, with no significant overfitting. These results
highlight the robustness of our SAT5-based gaze prediction model
in capturing multimodal conversational dynamics.

7.1 Quantitative Performance

7.1.1  Speaker State Modeling. Table 1 presents the quantitative
evaluation of speaker state modeling during the pretraining stage.
The results demonstrate that our SAT5 model effectively captures
speaker states, including both speaker transitions and silent mo-
ments. In the four-person setup, the model achieves an accuracy of
48%, while in the three-person setup, it reaches 55%. It is important
to note that our model is also capable of predicting silent segments.
As a result, the baseline accuracy for random guessing is 20% (for
four speakers plus silence) and 25% (for three speakers plus silence),
respectively.

7.1.2  Gaze Prediction. Table 2 presents quantitative evaluation of
gaze prediction models, demonstrating that pre-trained models con-
sistently outperform non-pre-trained baselines. Our SAT5 model
achieves the highest precision, significantly surpassing standard
transformer-based models such as BERT and T5. This improve-
ment highlights the effectiveness of speaker-aware embeddings,

Table 1: Quantitative results of speaker state modeling, av-
eraged over 10-fold cross-validation on the test sets with
varying participants.

l Participants [ Accuracy  F1-Score ]

3 0.5513 0.5553
4 0.4827 0.4495
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which allow the model to capture conversational dynamics and
gaze behavior more accurately than text-only approaches.

To further analyze the contributions of individual components
in SAT5, we conduct an ablation study, evaluating two key vari-
ations: SAT5 w/o Speaker State Modeling (SSM) and SAT5 w/o
Span Corruption (SP). As shown in Table 2, both variations exhibit
noticeable drops in performance, confirming the necessity of these
multi-task learning objectives. The degradation in SAT5 w/o SSM
suggests that explicitly modeling speaker transitions plays a critical
role in gaze prediction, as it helps the model better understand
when and where participants shift their attention. Similarly, the
performance drop in SAT5 w/o SP underscores the importance of
span corruption pretraining, which enhances the model’s ability to
handle pauses, interruptions, and incomplete utterances — common
challenges in real-world multi-party conversations.

Additionally, we examine the impact of chunk size on gaze pre-
diction accuracy to determine the optimal temporal resolution for
capturing gaze shifts. As presented in Table 3, we experimented
with different chunk sizes, including 1, 5, and 9 frames, to assess
their effect on contextual modeling. The results indicate that a
chunk size of 5 frames achieves the best balance between capturing
contextual dependencies and mitigating noise from erratic gaze
shifts. Smaller chunk sizes (e.g., 1 frame) result in excessive sensi-
tivity to short-term variations, reducing robustness, while larger
chunk sizes (e.g., 9 frames) lead to excessive smoothing, poten-
tially overlooking finer temporal variations in gaze behavior. This
analysis confirms that a 5-frame chunk size provides the optimal
trade-off, allowing the SAT5 model to maintain temporal coherence
while adapting to the dynamics of multi-party interactions.

These findings collectively demonstrate the effectiveness of SAT5
in leveraging speaker-aware multimodal adaptation for gaze pre-
diction. The integration of speaker representations, combined with
multi-task learning and optimal temporal segmentation, enables

Table 2: Quantitative results of gaze prediction, averaged over
10-fold cross-validation on the test sets.

l [ Precision Recall F1-Score ]
RNN 0.4609 0.3961 0.4132
GRU 0.4628 0.3958 0.4134
LSTM 0.4786 0.4029 0.4226
BERT 0.5556 0.4508 0.4831
T5 0.5601 0.4635 0.4954
SAT5 0.6680 0.5746 0.6122
SAT5 w/o SSM 0.6132 0.4673 0.5094
SAT5 w/o SP 0.6504 0.5242 0.5685

Table 3: Quantitative results of gaze prediction, averaged over
10-fold cross-validation on the test sets with varying chunk
sizes.

l Chunk Size [ Precision  Recall ~F1-Score ]
1 0.6508 0.5050 0.5515
5 0.6680 0.5746 0.6122
9 0.6384 0.5477 0.5833

Meng-Chen Lee and Zhigang Deng

the model to achieve state-of-the-art performance in predicting eye
gaze in multi-party conversations.

8 DISCUSSION AND CONCLUSION

In this paper, we present SAT5, a novel speaker-aware adaptation
of the T5 language model, designed to capture conversational dy-
namics in multi-party settings. Our key contributions include: (1)
introducing a circular speaker embedding system that encodes
speaker identities as angular coordinates on a unit circle; (2) design-
ing a multi-task pretraining objective that jointly models speaker
state prediction and span corruption; and (3) applying SATS5 to the
downstream task of gaze prediction, demonstrating its ability to
model the interplay between linguistic cues and speaker transitions.

Experimental results show that SAT5 achieves state-of-the-art
performance on gaze prediction, significantly outperforming base-
line models and highlighting the value of integrating speaker-
awareness into pre-trained language models. In addition, our speaker
embedding strategy is model-agnostic and can be incorporated into
any encoder that accepts token-level inputs, such as RNNs or BERT.
While this work focuses on adapting T5, evaluating the effective-
ness of the embedding design across different backbone models
remains an important direction for future research.

Despite these contributions, several limitations remain. First, al-
though our InHouseDataset includes 21 participants, which is com-
parable to datasets used in prior studies of multiparty conversation,
it is limited to three-party interactions and was collected in a con-
trolled laboratory setting. We plan to expand the dataset to include
four- and five-party conversations to improve generalizability. Sec-
ond, SATS5 currently focuses on gaze and text modalities. Although
vision-based features are not incorporated in this work, integrating
visual cues such as facial expressions and gestures represents a
promising direction for future research and may further enhance
model performance. Lastly, although SAT5 achieves strong results,
additional improvements and validation are needed for real-world
deployment. In future work, we will investigate model optimization
techniques, reduce inference latency, and evaluate the system in
live, interactive environments.

9 SAFE AND RESPONSIBLE INNOVATION
STATEMENT

Our research prioritizes ethical and responsible innovation by ex-
clusively using anonymized and Institutional Review Board (IRB)-
approved data from consenting adult participants. We emphasize
data privacy through secure handling and storage protocols, and
the models developed do not infer or reveal sensitive personal in-
formation. To mitigate potential bias, our dataset includes diverse
speakers and multimodal cues, ensuring inclusivity and minimiz-
ing representational harm. While our model enhances gaze-aware
interaction, we acknowledge the risk of misuse in surveillance or
deceptive human-agent systems, and advocate for its applications in
transparent, user-consensual contexts such as assistive technology
or educational tools.
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