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ABSTRACT

Accurate end-of-turn prediction in multiparty conversations is es-
sential for enabling dialogue systems to participate in fluid and
socially responsive interactions. While prior work has explored
linguistic, prosodic, and gaze-based cues, the role of continuous
bodily motion in modeling turn transitions remains relatively un-
derexplored. This study investigates the contribution of head, hand,
and full-body movements by learning symbolic motion represen-
tations through Vector Quantized Variational Autoencoders (VQ-
VAE). Each motion modality is encoded independently into a dis-
crete latent space, allowing us to assess their individual and com-
bined predictive value for end-of-turn classification. Using a triadic
conversation dataset with synchronized audio, gaze, and motion
streams, we evaluate the independent and combined contributions
of each motion modality. Our results show that hand motion, par-
ticularly when combined with gestural backchannel features, sig-
nificantly improves performance. In contrast, head motion encoded
via VQ-VAE provides only marginal gains and may overlap with
discrete gesture labels. Compared to prior work, our model achieves
higher precision, recall, and F1-score while maintaining real-time
inference speed. These findings highlight the potential of struc-
tured, data-driven motion embeddings in developing socially aware
dialogue systems.
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1 INTRODUCTION

In human communication, turn taking is a fundamental mechanism
governing the natural flow of conversation. In multiparty settings,
where interactions involve more than two individuals, this process
becomes particularly complex due to the dynamic interplay of ver-
bal and nonverbal signals exchanged among participants. These
interactions are shaped not only by what is said but also by how
and when it is expressed through voice, gaze, body posture, and
gestures. Understanding and modeling these multimodal behaviors
has become a key area of interest across diverse research fields in-
cluding conversational Al, human-computer interaction, and social
signal processing [16, 22, 31, 46]. In particular, the task of predicting
end-of-turn (EoT) moments, which determines when a speaker is
likely to yield the floor, is critical for developing conversational
systems capable of seamless and socially aware interactions [15, 48].

As dialogue systems increasingly shift toward real-time and
multiuser applications, accurate EoT prediction in multiparty con-
versations plays a central role in managing speech coordination
and conversational floor control [5, 45]. This task extends beyond
merely detecting silences or pauses; it requires interpreting com-
plex conversational cues to assess whether a speaker is concluding
their turn, pausing to think, addressing a specific interlocutor, or
expecting an interruption. The challenge is heightened in multi-
party scenarios where decisions must account for speaker roles,
listener dynamics, and potential overlaps or interruptions [10, 12].
Incorrect predictions in turn transitions can result in unnatural
interactions, such as prematurely interrupting speakers or delayed
responses, ultimately degrading the user experience [36, 37].

Recent research has demonstrated the advantages of incorporat-
ing multimodal signals, such as prosodic features, gaze behavior,
and discrete gestural annotations like nods and shakes, to enhance
EoT prediction [30]. However, quantifying the contribution of con-
tinuous bodily motion, especially full-body and hand gestures be-
yond simple binary labels, remains largely unexplored. Continuous
motion data provides rich temporal and spatial details signaling
engagement, hesitation, or readiness to speak [2, 43], nuances fre-
quently lost in discrete annotations.

To address these limitations, this study introduces a comprehen-
sive framework for online EoT prediction in multiparty conversa-
tions, emphasizing the integration of learned motion representations
into a multimodal architecture. Specifically, we investigate the pre-
dictive value of head, hand, and full-body motion encoded using
Vector Quantized Variational Autoencoders (VQ-VAE) [13], which
transform high-dimensional motion sequences into discrete sym-
bolic spaces. By modeling each motion modality separately, we
examine their individual and combined contributions to predicting


https://doi.org/10.1145/3716553.3750756
https://doi.org/10.1145/3716553.3750756

ICMI °25, October 13-17, 2025, Canberra, ACT, Australia

turn transitions. Additionally, we compare these learned repre-
sentations against traditional binary gesture annotations to assess
whether VQ-VAE effectively captures more subtle conversational
signals.

Recognizing that lightweight architectures such as distilled pre-
trained language models like DistilBERT combined with Gated
Recurrent Units (GRU) efficiently handle EoT prediction tasks with
minimal inference latency [30], we maintain this fundamental de-
sign for real-time responsiveness. Simultaneously, we extend the
architecture by incorporating structured motion embeddings and
cross-modal fusion strategies to enhance predictive accuracy, with-
out sacrificing system efficiency.

Our approach is evaluated on a triadic conversation dataset fea-
turing synchronized multimodal streams, including audio, text, gaze,
and motion. We focus specifically on predicting various EoT events
such as regular turn-taking, interruptions, and speech overlaps.
Through extensive experiments, we demonstrate that full-body and
hand motions provide complementary information that enhances
predictive accuracy, and that VQ-VAE-encoded head motion slightly
increase the performance than heuristic gesture annotations. These
findings highlight the potential of structured motion representa-
tions in real-time multimodal dialogue systems, contributing to
more adaptive and socially intelligent human-computer interac-
tions.

Contributions. The main contributions of this work include:

e Proposing a real-time end-of-turn prediction framework for
multi-party conversations that achieves a low latency by
leveraging a distilled pretrained language model (DistilBERT)
and GRU, while enhancing performance with symbolic mo-
tion representations.

e Introducing VQ-VAE to independently encode head, hand,
and full-body motion into discrete latent spaces, enabling
structured modeling of continuous gestural behaviors.

e Evaluating our model on triadic conversational data and
demonstrating that hand motions provide extensive and valu-
able predictive cues.

2 RELATED WORK

IPU-based Turn Prediction Models. Early work on EoT predic-
tion often adopted an Inter-Pausal Unit (IPU) framework, where
utterances are segmented based on silence thresholds, typically
200ms or longer, to delineate potential turn boundaries [28]. Rule-
based approaches such as semantic parsers [1] and early data-driven
models like decision trees [41] were used to classify long pauses
using syntactic, semantic, and prosodic cues. Subsequent studies re-
fined these methods by shortening pause durations and integrating
additional behavioral features [35, 42].

In a series of influential works, Ishii et al. [19-21] extended IPU-
based approaches by incorporating multimodal cues such as gaze
transitions, respiratory rhythms, and head movements to improve
EoT and speaker-change prediction. These studies demonstrated
that modeling mutual gaze, breathing, and speaker/listener head
motion toward the end of an utterance can significantly enhance
performance. Recently, Lee et al. [32] introduced the concept of
Relative Engagement Level (REL) to predict turn-taking behavior
in multiparty conversations, again using an IPU-based formulation.
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Figure 1: Illustration of the inference process for (a) IPU-
based models and (b) continuous models. The IPU-based
model makes predictions at the end of each Inter-Pausal
Unit (IPU), while the continuous model operates over the
entire speech stream without explicit segmentation.

Despite their conceptual clarity, IPU-based models are limited
in interactive settings. Because predictions are triggered only after
detecting a pause, these methods introduce a latency that under-
mines real-time responsiveness. Moreover, they often fail to capture
nuanced timing cues necessary for handling interruptions and over-
laps [29]. Figure 1(a) illustrates the contrast between IPU-based and
continuous prediction paradigms.

Continuous Turn Prediction Models. To overcome the la-
tency of IPU-based methods, continuous prediction models were
proposed to forecast EoT events at regular intervals (e.g., every
500ms) [17, 29, 38, 44]. These models treat turn-taking as a real-time
sequence modeling task, processing multimodal features frame by
frame to anticipate future speech activity. Skantze [44] introduced
a continuous turn-taking model based on prosodic cues using Long
Short-Term Memory (LSTM) models to forecast speech activity for
both speakers over a 3-second horizon. Roddy et al. [38] expanded
this framework with a multiscale LSTM to fuse modalities at differ-
ent temporal resolutions, demonstrating improved performance on
dyadic data.

However, these models are predominantly designed for dyadic
conversations and often struggle to generalize to multiparty sce-
narios, where speaker roles, addressee dynamics, and floor control
are inherently more complex. Prior attempts to extend continuous
multimodal modeling to multiparty contexts (e.g., [8]) have encoun-
tered scalability and performance challenges, highlighting the need
for more robust modeling of diverse social signals.

Multimodal Cues for End-of-Turn. Research on EoT cues
has emphasized the additive role of multimodal features in sig-
naling conversational intent. Verbal indicators such as syntactic
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completion and semantic closure have long been established as key
turn-yielding signals [14, 39]. Prosodic features including intona-
tion, loudness, energy, and pitch contours have also been shown
to reliably distinguish turn-holding from turn-yielding behavior
[15, 28, 48]. Visual signals, especially gaze, play a central role: speak-
ers often look toward interlocutors to yield the floor and avert their
gaze to hold it [9, 18].

While previous work has explored discrete gestures such as
head nods and shakes to improve EoT prediction [30], the potential
of continuous motion, particularly full-body and hand gestures,
remains unexplored. These signals can reflect subtle behavioral
cues such as hesitation, emphasis, or readiness to speak, which may
not be captured through binary labels or static pose features.

Learned Motion Representations. Recent advances in gener-
ative modeling have led to increased interest in learning symbolic
representations of human motion by discretizing continuous se-
quences into tokenized forms. These approaches offer an appealing
alternative to traditional coordinate-based models by enabling com-
pact, interpretable, and reusable embeddings for downstream tasks.
A prominent technique in this domain is VQ-VAE [13, 47], which
encode high-dimensional input sequences into discrete latent codes
from a learned codebook.

In gesture and behavior synthesis, VQ-VAE has emerged as a
popular technique for discretizing continuous motion into symbolic
representations that support controllable and diverse generation.
Bhattacharya et al. [3] proposed a text-to-gesture pipeline that
first learns a codebook of motion primitives using VQ-VAE and
then maps discrete gesture tokens to continuous gestures using
a transformer-based decoder. Similarly, Yi et al. [50] developed a
speech-driven gesture generation model that utilizes quantized
embeddings to produce stylized and semantically aligned gestures.
Yazdian et al. [49] introduced a discrete gesture embedding space
that enables retrieval and synthesis, while Liu et al. [33] leveraged
VQ-VAE to disentangle gesture style and content from video data for
flexible gesture generation. These approaches illustrate the value
of symbolic motion representations in modeling expressive human
behavior and enabling high-level control over gesture synthesis.

Despite these advances, the application of discrete motion repre-
sentations has largely focused on generative tasks, such as gesture
synthesis or action generation. Their use in predictive settings, such
as turn-taking or engagement modeling in multiparty dialogue, re-
mains limited. Our work addresses this gap by applying VQ-VAE to
encode head, hand, and full-body motion into discrete latent spaces
and integrating these symbolic representations into a real-time
multimodal EoT prediction model. Our approach allows for richer,
data-driven modeling of non-verbal behaviors that are not easily
captured by predefined gestures or raw feature aggregation. To the
best of our knowledge, this is the first application of VQ-VAE based
motion representations for EoT prediction in multiparty conversa-
tions, and it significantly expands the scope of motion-informed
interaction modeling.

3 DATA ACQUISITION

We constructed an in-house multimodal dataset capturing face-
to-face three-party conversations, originally collected for our ear-
lier study presented at ICMI 2023 [32]. In this work, we reuse the
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Figure 2: A snapshot from our three-party conversational
data acquisition setup.

raw recordings, comprising motion, gaze, and audio streams from
the previous study, while introducing new annotations, symbolic
motion representations, and downstream modeling components
tailored for end-of-turn prediction. The data acquisition setup is
illustrated in Figure 2.

Motion Capture. Body movements were recorded using a Vi-
con optical motion capture system with eight high-speed infrared
cameras—four mounted above and four below—to ensure compre-
hensive spatial coverage. Participants wore motion capture suits
fitted with reflective markers to track full-body motion, including
head, hand, torso, and leg movements. The captured 3D trajectories
were processed via inverse kinematics to extract joint angles for
downstream analysis (see Figure 2).

Gaze and Audio. Gaze behavior was captured using Ergoneers
Dikablis Glass 3 eye trackers (Ergoneers Group, Germany), selected
for their lightweight, wireless design and compatibility with D-LAB
software. Their eyeglass-like appearance minimized behavioral
interference and participant discomfort. Participants reported that
the devices had negligible impact on their natural conversational
behavior. Each participant also wore a wireless microphone clipped
to the neckline, allowing for clear and synchronized audio recording.
Gaze and audio data streams were recorded and synchronized using
D-LAB.

Capture Design. We recruited 21 participants (12 male, 9 fe-
male; aged 20-30) from a university campus and randomly assigned
them to seven triads. All participants were native English speak-
ers with no prior familiarity, ensuring spontaneous and unbiased
conversational dynamics.

Each group engaged in 3 to 5 unscripted sessions, freely dis-
cussing topics of their choice. Participants were positioned in an
equilateral triangle with approximately one meter of spacing, con-
sistent with established practices in multiparty conversation re-
search [6, 11, 23-25]. Although they were asked to maintain their
positions, natural body movement within the capture space was
permitted to preserve interaction authenticity.

Session durations across the seven groups were 46’18, 44’477,
46’177, 42’497, 46’317, 44’277, and 48°19”, totaling 319 minutes and 28
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Figure 3: Visualization of the GTV computation process. The
resulting Direction-of-Focus (DFoc) is depicted as a blue line.

seconds of recorded conversation. All modalities—motion capture,
eye tracking, and audio—were synchronized using a clapperboard
at the start of each session and uniformly downsampled to 60 Hz
to ensure precise temporal alignment.

4 FEATURE EXTRACTION

We extend the multimodal feature extraction pipeline in [30] for
this study, which includes frame-level representations of speaker
identity, prosody, gaze, and gestural backchanneling. In this section,
we briefly describe these components and then elaborate our motion
representation strategy.

Interlocutor States. Each frame is assigned a 1 X 3 Interlocu-
tor State Vector (ISV) that represents the communicative state of
each interlocutor. Speech activity was extracted using manually
corrected transcripts generated by OpenAl Whisper. Following the
criteria in [26], we identified active speech and verbal backchan-
neling using keyword-based rules (e.g., “Yeah,” “Um,” “Cool,” “Oh,”
“Okay,” “Right,” and “Uh”). Each ISV entry is labeled as 2 for active
speech, 1 for backchanneling, and 0 for silence. All annotations
were manually verified by human annotators to ensure accuracy.

Prosody Features. Prosodic cues were extracted using the Praat
toolkit [4], focusing on pitch and intensity at 16 ms resolution. Each
frame is represented by a 1 X 6 vector (pitch and intensity for all
the three interlocutors), capturing acoustic features that are known
to signal turn-yielding or turn-holding behavior.

Gaze Targets. Visual attention was modeled using the Direction-
of-Focus (DFoc) metric, computed from the orientation and position
of the hips, spine, head, and eyes [24]. Smoothed gaze vectors
were projected forward, and their intersections with the bounding
spheres of the heads of other interlocutors were used to estimate
the interlocutor’s focus of attention (illustrated in Figure 3). The
resulting 1x3 Gaze Target Vector (GTV) specifies which interlocutor
each individual is looking at during each frame.

Gestural Backchanneling (GB). Head gestures — including
nods and shakes — were detected using yaw and pitch dynamics,
through the adaptation of the algorithm in [27]. Frames were clas-
sified into stable, transient, or extreme categories based on angular
thresholds. We then generated a 1 X 6 binary Gestural Backchannel
Vector (GBV), consisting of two 1 X 3 sub-vectors that indicate head
nods and shakes respectively, for each non-speaking interlocutor.
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Figure 4: Illustration of three categories for end-of-turn: in-
terruption, overlapping, and turn-taking.

Motion Representations. To effectively model gestural behav-
ior in multiparty conversations, we adopt a symbolic motion repre-
sentation framework based on VQ-VAE, drawing inspiration from
the architecture of T2M-GPT [51]. While traditional approaches
typically rely on raw joint trajectories or hand-crafted kinematic
features, these representations tend to be noisy, redundant, and
difficult to generalize across various interlocutors and conversa-
tional contexts. In contrast, our objective is to obtain compact and
expressive motion embeddings that capture high-level gestural pat-
terns while enabling efficient integration into downstream EoT
prediction models.

To support modality-specific abstraction and analysis, we train
separate VQ-VAE models for head, hand, head-and-hand, and full-
body motion. Each model encodes its respective motion stream into
discrete latent tokens, which are then used as symbolic inputs to
our EoT prediction framework, alongside other modalities. This
design facilitates a unified and scalable representation of gesture
while allowing for fine-grained evaluation of each motion modality.
Further details on the architecture and training of the VQ-VAE
models are provided in Section 5.1.

5 METHODOLOGY

Label Annotations. Inspired by the prior work on EoT model-
ing [30], we also categorize EoT events into three distinct subtypes:
interruption, overlapping, and turn taking. Unlike traditional IPU
based annotation schemes, which typically label turn transitions
at coarse boundaries, our method provides high-resolution annota-
tions at 100 millisecond intervals. This design enables our approach
to track conversational dynamics at a much finer temporal granu-
larity, offering greater responsiveness and predictive capability.

To reduce the imbalance between positive and negative examples
in the training data, we adopt a forward-looking labeling strategy
consistent with previous literature [29], where a time frame is
labeled as a positive EoT instance if a speaker change is expected to
occur within the next 500 milliseconds. This anticipatory framing
allows the model to forecast upcoming transitions rather than react
to completed ones.

Figure 4 illustrates the three EoT subtypes. (i) Interruption oc-
curs when the next interlocutor begins speaking before the current
interlocutor has completed the utterance. Common in fast-paced
conversations, such instances often reflect high engagement or
competitive floor dynamics. In our annotations, we label both the
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500 milliseconds leading up to the transition and the overlapping
region itself as positive instances. (ii) Overlapping describes scenar-
ios in which multiple interlocutors start speaking simultaneously,
typically following a silence. This is a frequent phenomenon in mul-
tiparty interactions. We explicitly exclude brief listener responses
such as backchannels, since they generally do not lead to speaker
change. The “overlapping” label captures not only the lead-up to the
concurrent speech but also the expected resolution of the overlap.
(iii) Turn-taking represents smooth (regular) speaker transitions,
usually marked by a silence exceeding 200 milliseconds between
utterances. This category aligns closely with the traditional under-
standing of orderly floor exchange.

To accurately reflect the diversity of turn-transition behavior,
we formulate the prediction task as a four-class classification prob-
lem: interruption, overlapping, turn-taking, and not end-of-turn. This
multi-class structure enables the model to distinguish between nu-
anced speaker dynamics rather than collapsing all transitions into
a single positive label. By departing from IPU-based timing and
adopting a fine-grained and semantically meaningful label design,
our framework offers a robust foundation for real-time EoT predic-
tion in natural dialogue. The statistics of these sub-categories in
our dataset are presented in Table 1.

Table 1: Statistics of end-of-turn sub-categories in our dataset

. End-of-Turn
‘ Categories | Not End-of-Turn ‘ Interruption ~ Overlapping ~ Turn-Taking ‘
Instances 134,394 18,495 6,982 6,826
Ratio 80.6% 11.1% 4.2% 4.1%
5.1 Motion VQ-VAE

In this work, a gesture motion sequence is denoted as X = [Xf] ;zl,

where each frame x¢ € R4 captures both the global translation
of the character and the Euler rotations of its joints. Although
this representation preserves high-resolution motion details, it is
computationally intensive and introduces redundancy, which can
affect both model training and inference efficiency.

To obtain a more compact and symbolic representation, we em-
ploy VQ-VAE to discretize the motion sequence into a latent space.
The goal is to reconstruct the input sequence from a set of learned
codebook vectors C = [Ck]kK=1’ where each code vector ¢ € R%
resides in the low-dimensional latent space. The encoder Eyq trans-
forms the input X into a downsampled latent sequence Z = [Zg]{::l,
with z; € R% and a downsampling ratio of F/L.

Each latent vector z, is then quantized by locating the nearest
codebook entry,

Zp = arg min [|z¢ = cill2, )
creC

to produce a discrete index sequence S = [sf]le, where each s,
denotes the selected codebook entry. This sequence of symbolic
tokens serves as a compact, discrete representation of the original
motion, suitable for downstream applications (see Section 5.2).
To reconstruct the motion, each index sy is mapped back to its

corresponding code vector cs,, forming the quantized sequence
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Z =[5k,
the motion sequence X. The full encoding-decoding pipeline is

expressed as:

which is then passed to the decoder Dyq to recover

Z=Eyg(X), X=Dyg(Z). ()

Inspired by the T2M-GPT architecture [51], our VQ-VAE design
employs a 1D convolutional encoder composed of residual blocks
and ReLU activations, paired with a transpose convolutional de-
coder. The encoder reduces the temporal resolution of the motion
input through stride-based convolutions, producing latent embed-
dings that are quantized via the learned codebook. The decoder
then reconstructs the full-resolution motion sequence from these
discrete embeddings. Training is guided by the standard VQ-VAE
objective [47], which combines a reconstruction loss with a com-
mitment loss to ensure stability and consistency in the latent space.

5.2 Turn Prediction Model

Our primary objective is to design an efficient, online-capable (po-
tentially real-time) framework for predicting end-of-turn events
in multiparty conversations. Inspired by the recent work [30], we
leverage DistilBERT [40], a lightweight transformer-based language
model known for its compact architecture and rapid inference capa-
bilities, thus offering an efficient alternative to larger transformer
models. Additionally, instead of employing the commonly used
LSTM networks for modeling temporal features, we utilize a GRU
model. The GRU architecture, characterized by fewer gates and
parameters, offers faster computation speeds while maintaining
performance comparable to LSTM models [7].

We empirically set our temporal analysis window to 500 mil-
liseconds (ms) and select a step size of 100 ms, implying that our
model predicts EoT occurrences every 100 ms based on features
captured within the previous 500 ms. To effectively capture lin-
guistic context, we extend the text feature window significantly,
incorporating textual content from up to 100 seconds prior to each
prediction point. This extended time frame was selected based on
empirical observations indicating that shorter windows frequently
omit critical conversational elements or encounter silences that
hinder accurate interpretation of speaker contributions. For motion
data specifically, we synchronize the window length to match the
VQ-VAE window size K.

Figure 5 illustrates an architecture overview of our model. For
text features, we employ DistilBERT to extract semantic embed-
dings from input tokens, while motion features are derived from
modality-specific VQ-VAE models, as detailed in Section 5.1. Both
DistilBERT and the VQ-VAE encoders are frozen during the training
of our EoT prediction model. We intentionally avoid fine-tuning
these encoders due to the inherent complexity and multimodal
nature of our task, thereby mitigating potential overfitting risks as-
sociated with the richness and redundancy of multimodal features.

The textual modality is first tokenized, with each token trans-
formed into embeddings that encode semantic and contextual in-
formation through DistilBERT s transformer layers. Similarly, the
VQ-VAE encoders convert continuous motion sequences into com-
pact, quantized latent embeddings. These contextual embeddings
from both modalities are subsequently integrated with additional
numeric and time-series features that have undergone Min-Max
normalization to maintain consistent feature scales.
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Figure 5: The architecture of our window-based prediction model

To fuse other inputs effectively, we employ an early fusion strat-
egy, concatenating all feature vectors into a single unified represen-
tation. This combined representation is then fed into a single-layer
GRU network with a hidden dimension of A units. The GRU model,
distinguished by its reset and update gates, efficiently captures tem-
poral dependencies and patterns critical to accurately predicting
conversational dynamics.

Following the GRU-based temporal modeling stage, the GRU’s
final hidden states are combined with the embeddings from the Dis-
tiIBERT and VQ-VAE encoders. This integrated feature representa-
tion undergoes further refinement through a cross-modal attention
layer, as illustrated in Figure 5(b), ultimately yielding probabilities
for each EoT class.

6 EVALUATION
6.1 System Setup

For motion quantization, we adopted a VQ-VAE model with a code-
book size of 512 X 512. The temporal downsampling ratio was
F/L = 4, and each motion sequence was segmented to a fixed
length of F = 120 frames for training. Each frame contained motion
features with dimensionality d = 46. The model was trained using
the AdamW optimizer [34] with f; = 0.9, 2 = 0.99, a batch size
of 128, and an exponential moving average coefficient of A = 0.99.
The learning rate was scheduled in stages: 2 x 10~ for the first 50K
iterations, followed by 1 x 107> until 350K iterations, and finally
decayed to 5 x 1077 for iterations beyond 400K.

For the end-of-turn prediction model, we used a GRU-based
classifier with a hidden state dimensionality of h = 256. The input
size was either 12 or 18 depending on the inclusion of gestural
backchanneling (GB) features. To improve robustness and prevent
overfitting, we applied a dropout rate of 0.1 and employed early
stopping based on validation performance. The model was trained
using the Adam optimizer with an initial learning rate of 0.001
and optimized via the cross-entropy loss function for multiclass
classification.

The input feature windows were temporally aligned as follows:
text input was processed using a window of 100 seconds, motion
features used a 2-second window aligned with the VQ-VAE segment
length (F), and all other features used a 500-millisecond window.
To mitigate class imbalance, the training data was downsampled,
while evaluation was conducted on the original unbalanced test set.
We trained all models for 80 epochs to ensure a stable convergence.

All experiments were performed on an off-the-shelf computer
equipped with an Intel 19-13900K CPU @ 3.00GHz, 80 GB of RAM,
and a single NVIDIA GeForce RTX 4090 GPU.

6.2 Results

To rigorously assess the performance of our model, we implemented
a comprehensive and systematic evaluation methodology designed
to ensure reliability across diverse conversational scenarios. We
employed a 10-fold cross-validation approach, widely recognized
for robustly evaluating predictive models. Specifically, our dataset
was randomly partitioned into ten equally sized subsets, iteratively
using nine subsets for training and the remaining subset for testing.
This process was repeated ten times, with each subset serving once
as the test set, thereby thoroughly assessing the model’s generaliza-
tion capabilities. To measure the performance comprehensively, we
calculated precision, recall, and F1 scores using a macro-average
approach, ensuring that each class or conversational dynamic was
weighted equally in our evaluation.

Table 2 provides a detailed overview of our model’s performance
metrics across each EoT category. We observed notable variations
in precision, recall, and F1-score across these categories. For ex-
ample, our model achieved a higher precision (0.805) and recall
(0.836) for the interruption category, indicating its strong capability
in accurately identifying interruption events. However, the model
exhibited comparatively lower precision and recall for overlapping
and interruption events, underscoring the inherent difficulty in
distinguishing these nuanced conversational behaviors. Although
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Table 2: Performance metrics for the four-class categoriza-
tion, highlighting individual category performance.

‘ ‘ Metrics ‘
‘ Class ‘ Accuracy Precision Recall F-Measure ‘
Macro-Average 0.933 0.802 0.807 0.804

Not End-of-Turn - 0.975 0.970 0.972
Interruption - 0.805 0.836 0.821
Overlapping - 0.647 0.647 0.647
Turn-Taking - 0.781 0.770 0.775

Table 3: Quantitative comparison of turn prediction between
our model and the state of the art work [30].

‘ Model Inference time (ms) Precision Recall F-Measure ‘
Lee et al. [30] 2+0.06 0.758 0.755 0.756
Ours 5.53+£0.12 0.802 0.807 0.804

overlapping and turn-taking occur with similar frequency, overlap-
ping speech often features rapid and uncoordinated onsets, mak-
ing it more ambiguous and harder to model. This ambiguity also
contributes to reduced precision for the interruption class, as in-
terruptions are frequently misclassified as overlapping events. In
contrast, turn-taking typically presents clearer temporal bound-
aries, resulting in better model performance. Overall, the macro-
averaged precision (0.802), recall (0.807), and F1-score (0.804) offer
a balanced evaluation of the model’s effectiveness across diverse
EoT subcategories.

Furthermore, in Table 3, we present a detailed comparative anal-
ysis between our model and the previous state of the art method
[30] for predicting EoT events in multiparty conversations. This
comparison serves as a crucial benchmark for highlighting the im-
provements achieved by our approach. Our model demonstrates
superior performance across all evaluated metrics compared to the
state of the art method [30]. Specifically, our approach attains a
precision of 0.802, underscoring its accuracy in correctly identifying
true end-of-turn events. Additionally, a recall of 0.807 highlights the
model’s effectiveness in capturing a significant proportion of actual
turn transitions. The resulting F1-score of 0.804 further emphasizes
the balanced and robust predictive capability of our model, clearly
outperforming previous approaches.

6.3 Ablation Study

To investigate the role of motions and gestures in end-of-turn clas-
sification, we conducted an ablation study that compare explicit
GB features with learned motion representations derived from vec-
tor quantized (VQ) embeddings. Specifically, we aimed to evaluate
whether removing GB improves performance, whether it can be
effectively replaced by latent motion features from head VQ, and
how performance varies when using whole-body, hand-only, or
head-and-hand VQ representations.

The evaluation results (Figure 4) reveal several important in-
sights regarding the contribution of motion and GB to this task.
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Overall, incorporating motion data leads to consistent improve-
ments in both macro-averaged and per-class performance metrics.
Among all configurations, the combination of hand motion and
GB vyields the best results, achieving a macro F1-score of 0.8041
and an overall accuracy of 0.9328. This setup provides balanced
precision and recall across all four classes, suggesting that hand
motion enriched with GB offers strong and discriminative cues for
distinguishing between different turn-taking behaviors.

In contrast, combining GB with head-only motion results in a
noticeably lower performance, with the macro F1 decreasing to
0.6980. This outcome may reflect an overreliance on head move-
ments alone, which may be insufficient to capture more complex
interaction dynamics. Interestingly, when GB is removed, the per-
formance of head-only motion improves significantly, with the
macro F1 rising to 0.7787. This indicates a potential redundancy or
interference between the explicit GB features and the latent head
motion representations extracted by the VQ-VAE model. In fact,
most configurations that include gestural backchanneling show a
reduction in performance unless paired specifically with hand-only
motion. This suggests that the combination of GB and head VQ
provides overlapping signals that may not be complementary. No-
tably, the latent representation of head motion, although capable
of capturing a broader range of semantic motion features, does not
outperform the discrete GB features. This observation implies that
head nodding and shaking alone likely represent the most salient
and informative components of head motion for this task.

Furthermore, we observe that when both head and hand VQ or
whole-body VQ representations are included, performance often
declines relative to using hand-only motion. This pattern indicates
that hand motion serves as the most critical nonverbal cue for
end-of-turn detection, while the inclusion of additional body re-
gions may introduce redundancy rather than improve the model.
Taken together, these findings highlight the importance of selecting
complementary and non-overlapping motion signals and suggest
that discrete GB combined with hand VQ offers the most effective
configuration for multimodal end-of-turn prediction.

Nevertheless, as shown in Table 5, all model configurations
achieve inference speeds compatible with real-time applications,
demonstrating their suitability for deployment in interactive sys-
tems. The reported inference time includes motion vector quantiza-
tion, text embedding extraction, and multimodal fusion. However,
due to the offline nature of our data collection, we do not account
for the additional latency introduced by upstream processes such as
speech-to-text transcription, eye gaze tracking, or motion capture.
In practice, researchers may choose different sensing and process-
ing pipelines based on their specific requirements, which can result
in varying latency.

7 DISCUSSION AND CONCLUSION

We present a real-time multimodal framework for end-of-turn (EoT)
prediction in multiparty conversations, with a particular emphasis
on learning symbolic gesture representations through VQ-VAE. By
systematically evaluating head, hand, and full-body motion repre-
sentations, both independently and in combination with traditional
gestural backchannel features, we uncovered several key insights
into the role of motion in conversational dynamics.
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Table 4: Full evaluation results for all configurations, showing accuracy (Acc), macro-averaged scores, and per-class precision
(P), recall (R), and F1.

GB Motion Overall Not End-of-Turn Interruption Overlapping Turn-Taking
Acc P R F1 P R F1 P R F1 P R F1 P R F1
False i 0.895 0.6901 0.8216 07379 | 0.9855 0916 09495 | 0.802  0.8438 0.8223 | 0.5056 0.6618 0.5732 | 0.4672 0.8649  0.6066
True 09052 07132 0.8329  0.7606 | 0.9817 09265 0.9533 | 0.8191  0.849  0.8338 | 0.47  0.6912 0.5595 | 0.5818 0.8649  0.6957
False whole 09172 07736 0.8161 0.7898 | 0.976 0.9467 09612 | 0.7714 0.8438 0.806 | 0.4792 0.6765 0561 | 0.8676 07973  0.831
True 09016 0755  0.8075 0.7643 | 0.9763 0.9287 0.9519 | 0.8256  0.8385  0.832 | 0.3429 07059 0.4615 | 0.875  0.7568 0.8116
False head 09076 0.7848 0.8117 0.7787 | 0.969 09385 0.9535 | 0.8478 0.8125 0.8298 | 0.3926 07794 05222 | 0.9298 07162  0.8092
True 0.856  0.655 0.8271  0.698 | 0.9906 0.8657 0.9239 | 0.8351 0.8177 0.8263 | 04752 07059 0568 | 0.3192 09189  0.4739
False hand 09202 07747 0.8225 0.7824 | 0.9785 0958  0.9682 | 0.9119 0.7552 0.8262 | 0.4109 0.7794 05381 | 0.7973 07973  0.7973
True 0.9328 0.802 08065 0.8041 | 0.9751 0.97 0.9725 | 0.805 0.8385 0.8214 | 0.6471 0.6471 0.6471 | 0.7808 0.7703  0.7755
False head and hand | 0898 07575 08229 07621 | 0.9826 09295 0.9553 | 0.9051 07448 08171 | 0.3046 07794 0438 | 08378 08378 0.8378
0.8326 0.6459 0.8292 0.6786 | 0.992 0.8395 0.9094 | 0.875 07656 0.8167 | 0.4417 07794 0.5638 | 0.2749 0.9324  0.4246
Table 5: Runtime statistics of our approach for different con- models capable of distinguishing interruptions and overlaps from
figurations. standard end-of-turn events, a distinction that holds significant
relevance for virtual agents and conversational interfaces.
‘ GB Motion Inference time (ms) ‘ Another important avenue is the deployment of our framework
in embodied agents and robotic systems. Applying our end-of-turn
whole 5.54+0.18 - . - .
prediction model to physical robots or avatars in shared virtual
head 5.57 £ 0.21 . . . L .
True environments, such as multi-agent interaction in online platforms
hand 5.53 +0.12 .
or the metaverse, would allow us to evaluate the framework in more
head & hand 5.54 +0.13 . . . . . .
interactive, dynamic, and socially situated contexts. Such testing
whole 5.49 +0.15 can reveal new challenges related to embodiment, responsiveness,
Fal head 5.52+0.15 and coordination, and would help bridge the gap between offline
alse .
hand 5.53 +0.18 modeling and real-world deployment.
head & hand 5.47 £0.11 Although our current system supports real-time inference on
pre-recorded data, we have not yet realized a fully integrated, live-
processing system. Toward this goal, we plan to leverage emerging
Our findings reveal that hand motion provides the most salient platforms such as Mixed Reality (MR) and Extended Reality (XR)
cues for predicting turn transitions, consistently outperforming devices, which offer built-in multimodal sensing capabilities. These
head and full-body motion when used alone or in combination. technologies can facilitate more naturalistic deployments and en-
The VQ-VAE-based hand motion representation, especially when able responsive turn-taking in immersive environments.

fused with discrete gestural features such as head nods and shakes,

captures rich temporal dynamics and generalizes well across conver- 8 SAFE AND RESPONSIBLE INNOVATION
sation types and speaker behaviors. In contrast, incorporating head STATEMENT

motion, particularly when combined with backchannel gestures,
often introduces redundant or overlapping signals. Our ablation
study shows that this redundancy can lead to performance degrada-
tion, likely due to VQ-VAE’s tendency to overuse certain codebook
entries, diminishing its ability to preserve fine-grained variations.

While the proposed model outperforms existing methods in
predictive accuracy and meets the latency requirements for real-
time applications, several limitations remain. Most notably, the
current VQ-VAE framework may struggle to retain subtle gestural
nuances, such as micro head movements, due to its reliance on
discrete quantization and potential codebook imbalance. To address
this, future work will explore techniques such as soft or entropy-
regularized quantization to improve symbolic diversity and better
capture nuanced motion patterns.

Looking ahead, our research offers several promising directions.
We aim to extend our framework beyond triadic conversations to
more complex multiparty interactions, including four- and five-
party scenarios, enabling a deeper exploration of real-world dia- ACKNOWLEDGMENTS
logue dynamics. In parallel, we plan to develop more sophisticated This work is supported in part by US NSF IIS grant 2005430.

Our research upholds ethical and responsible innovation by ex-
clusively utilizing anonymized IRB approved data collected from
consenting adult participants in naturalistic multiparty conversa-
tions. We maintain strict privacy standards through secure data
handling and storage protocols, and our models are designed to
operate on symbolic representations that do not infer or expose
personally identifiable information. To address potential bias, our
dataset encompasses a diverse set of speakers, conversation dynam-
ics, and multimodal behaviors, ensuring inclusivity and reducing
representational harm. Although our models aim to support real
time conversational systems, we recognize the risk of misuse in
surveillance or manipulative applications. We strongly advocate for
their deployment in transparent user consensual settings, including
but not limited to assistive communication, social robotics, and
education such as assistive technology or educational tools.
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