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Structural Chain of thoughts for Radiology Education

Abstract

Radiology education requires trainees to develop both perceptual and inter-
pretive expertise, yet the feedback required to develop these skills remain
scarce due to the demanding schedules of experienced radiologists. This lack
of personalized guidance makes it difficult for learners to understand not
just what errors they made, but also the reason why those errors occurred
and how to refine their reasoning skills. Although Large Language Models
(LLMs) and Large Multimodal Models (LMMs) have shown promise in ra-
diology applications, they struggle with fine-grained multimodal reasoning.
Specifically, these models struggle in detecting subtle cross-modal patterns,
such as variations in gaze behavior and diagnostic decisions. These small
yet critical differences in how experts and novices allocate visual attention
can reveal underlying perceptual gaps, which are often overlooked by current
AI-driven approaches. To address these limitations, we introduce Structural
Chain of Thoughts (SCoT)—a novel framework that enhances AI sensitivity
to nuanced multimodal differences by structuring gaze data and diagnostic
reasoning into a thought graph. By leveraging a structural prior, SCoT sys-
tematically identifies key perceptual and interpretive discrepancies, allowing
models to provide targeted, context-aware feedback. This structured ap-
proach not only highlights missed findings but also explains the reasoning
behind perceptual errors, turning them into learning opportunities. Applied
within radiology education, SCoT bridges the gap between expert and novice
performance, offering a scalable solution for AI-driven diagnostic training.
We further contribute a simulated dataset of perceptual errors, facilitating
future research into multimodal reasoning and educational AI in medical
imaging. The code and data will be available here: GitHub Repository

Keywords: Perceptual Error, Large Multimodal Models (LMMs), Large
Language Models (LLMs), Zero-Shot (ZS), Few-Shot (FS), Chain of
Thought (CoT), Structural Chain of Thoughts (SCoT)
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1. Introduction

Figure 1: Comparison of multimodal signals (gaze + report transcription) between student
and teacher radiologists. Column 1 displays the teacher’s gaze and report transcription
data, while Column 2 shows the student’s data. Despite similar gaze patterns, the student
misses a diagnostic finding in the right lung base due to a brief fixation duration. These
subtle differences in eye gaze data highlight the challenges the model faces in detecting
the reasoning behind the missed diagnosis.

Radiology education is a highly specialized field that requires learners to
develop both perceptual and interpretive expertise [1, 2, 3]. However, one
of the primary challenges in radiology education is the limited availability of
expert feedback due to time constraints [4]. Radiologists often have demand-
ing clinical responsibilities, leaving little time for personalized teaching and
mentorship [5, 6]. This creates a gap in the learning process, where students
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may struggle to receive targeted guidance on how to improve their diagnostic
skills [7, 8].

With advancements in artificial intelligence, particularly Large Language
Models (LLMs) and Large Multimodal Models (LMMs), there is growing in-
terest in leveraging these technologies to support radiology education [9, 10,
11]. LLMs and LMMs have already been explored for tasks such as report
generation [12, 13], image interpretation [14, 15], and clinical decision sup-
port [16, 17]. Recently, researchers have begun investigating their potential
in educational settings, including curriculum development, structured report
assessment, and new training methodologies [18, 19, 20, 21]. However, a crit-
ical gap remains; these models have not been developed to provide personal-
ized feedback on image interpretation or to identify and explain perceptual
errors in chest X-ray (CXR) analysis.

Perceptual errors in radiology are closely tied to the radiologist’s eye-
gaze patterns, which reveals how visual attention is allocated during image
interpretation [22, 23]. These errors often occur due to three reasons [22]:
(1) a student may fail to fixate on the abnormality at all, meaning they never
searched for it—similar to the “satisfaction of search” effect, where once one
abnormality is found, further searching is neglected; (2) they may fixate on
the abnormal region but the duration is too short, suggesting they were in the
area of interest but did not process the abnormality sufficiently; or (3) they
may follow a reasonable gaze pattern but still miss the diagnosis due to lack
of experience or knowledge. These subtle lapses in attention allocation can
lead to diagnostic mistakes, yet no AI-driven solution currently explains why
these errors occur. By analyzing multimodal signals—such as eye-tracking
data and diagnostic reports—LLMs and LMMs could offer valuable insights
into how expert and novice radiologists approach clinical cases, enabling
targeted feedback to address perceptual gaps.

However, leveraging LLMs and LMMs for personalized feedback in radi-
ology presents significant challenges, particularly in their limited ability to
perform complex multimodal reasoning and compare subtle spatial and tem-
poral variations in multimodal signals [24, 25]. Current prompting strategies
often struggle to capture nuanced differences in multimodal data, which lim-
its their effectiveness in providing meaningful feedback. For instance, as
illustrated in Figure 1, a student radiologist overlooks a small effusion in the
right lung. While their gaze patterns closely resemble those of an expert, sub-
tle discrepancies, such as shorter fixation durations on the abnormal region,
can be critical. Detecting such fine-grained variations requires structured
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reasoning mechanisms that go beyond simple pattern recognition[26].
The complexity of comparing multimodal signals, such as radiology re-

port transcriptions and gaze patterns of student and expert radiologists, lies
in the intricate spatial and temporal interactions between these modalities.
Our findings reveal that LLMs and LMMs, under current prompting strate-
gies, often fail to detect these subtle variations. This limitation reduces their
sensitivity to perceptual and interpretive gaps, particularly in tasks requiring
detailed comparisons, such as assessing how an expert and a novice approach
the same diagnostic task. In radiology education, the ability to analyze and
compare eye-tracking patterns and diagnostic interpretations between experi-
enced radiologists and trainees could enable more precise, targeted feedback.
Such feedback would go beyond broad recommendations, ultimately improv-
ing learning outcomes [27]. This highlights the need for advanced reasoning
capabilities in LLMs and LMMs to bridge these gaps and enhance their utility
in radiology education.

To address these limitations, we propose a novel framework, Structural
Chain of Thoughts (SCoT), designed to enhance the sensitivity of LLMs
and LMMs in analyzing multimodal signals. SCoT introduces a structured
comparison mechanism using a “thought graph” that formalizes interactions
between different modalities, such as gaze data and textual reports. This
framework enables LLMs and LMMs to systematically identify fine-grained
discrepancies in diagnostic reasoning, thus facilitating targeted and person-
alized feedback for learners.

Our methodology begins by organizing multimodal data—such as eye-
tracking patterns and corresponding diagnostic interpretations—into a uni-
fied structural representation. By computing structural differences within
this representation, we generate a “structural prior” that directs the model’s
attention to critical variations. This improves the model’s ability to pro-
vide personalized feedback, allowing precise identification of perceptual and
interpretive gaps in a learner’s diagnostic process.
Our contributions are as follows:

• Personalized Perceptual Error Feedback: We present the Struc-
tural Chain of Thoughts (SCoT) framework, tailored for radiology ed-
ucation, to analyze eye-gaze and diagnostic report data from both ex-
pert and student radiologists. SCoT provides a structured approach to
identify and interpret perceptual errors, offering precise, context-aware
feedback. This feedback highlights specific gaps in attention and inter-
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pretation, helping students improve their diagnostic skills by focusing
on areas where their perceptual processes differ from those of expert
radiologists.

• Methodological Contribution: We introduce SCoT as a novel method-
ology for structuring multimodal data in radiology education. By
enhancing model sensitivity to subtle differences in complex spatio-
temporal signals, SCoT enables detailed comparisons across modali-
ties, such as eye-gaze data and radiological reports. This methodology
facilitates nuanced, context-driven reasoning, allowing for the detec-
tion of fine-grained variations in diagnostic processes and ultimately
improving educational outcomes.

• Data Contribution: We release a new simulated dataset containing
various perceptual errors in radiology, which supports ongoing research
into diagnostic accuracy and the development of advanced error cor-
rection systems.

2. Related Work

2.1. Radiology Education

Radiology education requires learners to develop both technical knowl-
edge and perceptual expertise to accurately interpret medical images [1, 2, 3].
Effective training is often hindered by multiple challenges. Senior physicians
have limited time for mentorship due to clinical responsibilities, reducing
opportunities for direct trainee supervision [28]. The absence of standard-
ized training frameworks across hospitals results in inconsistent skill devel-
opment [4, 29]. Additionally, variations in faculty teaching proficiency con-
tribute to disparities in residency education quality, making it difficult to
ensure a uniform learning experience [4, 29]. The traditional medical educa-
tion system is often fragmented and inefficient. It relies on uniform, teacher-
centered instruction, outdated textbooks, and resource-intensive programs,
leading to inconsistencies in educational quality [29, 30]. Studies have also
highlighted the lack of expert feedback and personalized training in radiol-
ogy education [5, 6]. Without tailored guidance, trainees struggle to develop
strong diagnostic reasoning skills [7, 8].

Aligned with Deliberate Practice Theory, effective training in radiology
hinges on structured practice, clearly defined goals, and consistent feedback

5

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5230388

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



[31, 32]. In particular, visual attention and gaze allocation are crucial to
improving diagnostic performance [33, 34]. Recent advancements in Eye
Movement Modeling Examples (EMMEs) have highlighted the value of in-
corporating expert gaze patterns to help learners refine their visual attention
[35]. Studies show that leveraging eye-tracking data significantly enhances
anatomical identification [33] and aids in decision-making during dynamic
visual tasks [34].

Despite these advances, existing computer-aided education systems pri-
marily focus on automated assessments rather than interactive, personalized
learning experiences [36, 37]. Prior work often lacks integration with mul-
timodal data, such as eye-gaze patterns and diagnostic reports, which are
crucial for understanding reasoning processes [14, 15]. Consequently, there
remains a need for intelligent, adaptive systems that provide targeted feed-
back to bridge the gap between self-directed learning and expert mentorship
in radiology training.

2.2. Role of Artificial Intelligence in Radiology Education

Artificial intelligence, particularly LLMs and LMMs, has significantly ad-
vanced various applications in radiology. Traditionally, these models have
been explored extensively for tasks related to clinical decision support sys-
tems, including radiology report generation [12, 13], image interpretation [14,
15], and visual question answering (VQA) [16, 17] to enhance diagnos-
tic accuracy and workflow efficiency. In recent years, however, there has
been growing interest in leveraging LLMs and LMMs for radiology educa-
tion [20, 9, 10, 11]. Studies have explored their role in enriching curriculum
development, supporting teaching and learning, and facilitating learner as-
sessment [19, 20]. These models can generate explanatory content, offer
automated assessments to improve student engagement, and create medical
case studies with associated diagnoses and treatments [21, 19].

Despite these improvements, many existing AI-driven educational tools
in radiology do not incorporate personalized feedback mechanisms to identify
perceptual errors [22, 23]. This occurs largely due to their limited capacity
for complex fine-grained reasoning and their inability to effectively compare
multimodal signals with subtle spatial and temporal variations [38, 39]. This
gap highlights the need for AI-driven teaching systems that not only assist
in knowledge dissemination but also adapt to individual learning patterns,
ensuring a more effective and tailored educational experience.
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2.3. Chain-of-Thought (CoT) and Multimodal Reasoning
A key prompting and reasoning technique in LLMs, Chain of Thought

(CoT), breaks complex problems into smaller steps, improving performance
in tasks such as arithmetic, logic, and common sense reasoning [40]. CoT can
be applied in Zero-Shot settings, where models reason without prior exam-
ples [41], or Few-Shot Scenarios, where a limited number of examples guide
the reasoning process [42, 43]. However, standard CoT can be inconsistent,
resulting in the development of improved techniques such as Self-Consistency
CoT (CoT-SC) [44], which selects the most reliable reasoning path, and self-
verification methods [45, 46, 47] that incorporate confidence measures.

Numerous studies have explored optimizing CoT to improve model per-
formance for complex tasks such as in-context learning [48], where models
retrieve relevant prompts, and Least-to-Most Prompting [49], which breaks
problems into smaller subproblems. Advanced structures further refine CoT.
For instance, Tree-of-Thoughts (ToT) [50] organizes reasoning as a tree,
enabling multiple solution paths, Graph-of-Thoughts (GoT) [51] maps de-
pendencies between steps, while Skeleton-of-Thought (SoT) [52] processes
multiple reasoning streams in parallel. CoT techniques continue to evolve,
expanding LLM capabilities through structured problem-solving.

Extending CoT to Multimodal tasks, researchers have adapted its rea-
soning mechanisms for image- and video-based applications using zero-shot
[53], few-shot [54], and self-consistency prompting [44]. Notable approaches
include VidIL [55] for video, DDCoT [56] for images, and CCoT [57], which
enhances visual reasoning with scene graphs. Additionally, DCoT [58] models
object relationships for zero-shot inference, while Video-of-Thought (VoT)
[59] structures temporal reasoning for video tasks. Although these CoT
extensions have improved LLMs’ multimodal reasoning, current prompting
strategies still struggle with capturing nuanced differences in multimodal
data, particularly when intricate spatial and temporal interactions between
modalities demand more structured reasoning. In such cases, more context-
aware reasoning mechanisms are required to accurately interpret the nuanced
dependencies that span across multiple modalities.

Existing radiology education frameworks face challenges related to in-
consistent training, limited mentorship, and the lack of personalized feed-
back. AI-driven systems, particularly LLMs and LMMs, offer promising solu-
tions but currently fail to provide fine-grained perceptual reasoning feedback.
While advances in CoT reasoning have improved model interpretability, no
prior work has explored integrating eye gaze data with textual information
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to generate personalized prompts for structured decision-making. This paper
aims to address these gaps by proposing an AI-driven framework that lever-
ages multimodal CoT reasoning to deliver personalized, adaptive feedback in
radiology education, bridging the divide between self-directed learning and
expert mentorship.

3. Method

Test-time scaling is a critical technique for adapting LLMs and LMMs to
perform complex multimodal reasoning without requiring additional train-
ing or fine-tuning. To address the limitations of existing approaches, we
introduce the Structural Chain-of-Thought (SCoT) prompting strategy, a
structured framework that enables these models to systematically analyze
and compare multimodal data, such as gaze patterns and diagnostic inter-
pretations, between students and teachers. SCoT identifies perceptual errors
and provides personalized feedback to student radiologists, enhancing their
diagnostic reasoning skills. The design of SCoT is grounded in mathematical
foundations and structured representations that establish structural priors,
ensuring the model effectively captures relationships between fixation pat-
terns and report transcriptions. These priors guide the reasoning process,
enabling the model to detect subtle discrepancies in visual attention and di-
agnostic reasoning. We then present the overall methodology, detailing how
SCoT organizes information into a structured reasoning framework.

3.1. Mathematical Foundation

The setup for analyzing the gaze data of teaching and student radiologists
is defined as follows:

• DT , DS ∈ Rt×d represent the gaze data matrices for the teaching and
student radiologists, respectively. Here, t is the number of time steps,
and d is the dimensionality, encompassing spatial fixation points and
fixation durations. Each column in d represents different features of
the gaze data, including the x and y coordinates for the fixation point
and the fixation duration.

• RT , RS denotes the report transcriptions of the teaching and student
radiologists encompassing the sentence level timestamps, which provide
context to interpret the gaze patterns.
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Our goal is to reduce the burden on the LLM/LMM and increase its
sensitivity in comparing two multimodal signals so that it can capture the
subtle differences between the student and teacher radiologist’s eye gaze and
report transcriptions. This allows the model to provide useful reasoning to
the student radiologist about why they missed a diagnosis or key detail based
on their gaze patterns. This involves analyzing both gaze and report data
in a way that enhances the model’s ability to detect small but significant
differences between DT and DS and between RT and RS. This is achieved
by using a graph structure to model the diagnostic thinking process of each
radiologist.

Figure 2: Overview of our proposed methodology, Structural Chain of Thought (SCoT)
with Prior, which enhances LLM/LMM sensitivity to subtle differences in complex mul-
timodal signals. The process consists of three phases: (1) Structure Generation: creat-
ing structured representations of multimodal data; (2) Prior Construction: generating a
structural prior that highlights the most relevant features; and (3) SCoT Prompting with
Prior: leveraging the structural prior to guide the model’s attention to fine-grained details,
thereby improving its ability to reason accurately in complex multimodal tasks.

3.2. SCoT Methodology

As shown in Figure 3, the SCoT methodology involves three main phases
for structuring multimodal inputs, calculating the structural discrepancy
used as a prior for the LLM/LMM, allowing for a reasoning-driven com-
parison by LLMs or LMMs between two multimodal signals.

3.2.1. Structure Creation and Attribute Generation

Multimodal Signal Structuring: We define a multimodal representation
GT = f(DT , RT ) for the teaching radiologist and GS = f(DS, RS) for the
student radiologist, where f is a transformation that consolidates gaze and
report data into a structured graph form, referred to as the “thought graph”.
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This graph encodes the diagnostic process, mapping gaze fixation patterns to
report interpretations. Each thought in the thought graph corresponds to a
sentence in the radiology report separated with the period (“.”), representing
a particular diagnosis. The representation of thought graphs is illustrated
in Figure 3, which visually depicts how gaze fixation patterns and report
interpretations are structured into subgraphs.
Graph Structure for Thought Representation: Define a directed graph
G = (V,E) to represent each radiologist’s thought process, where:

• Each node vi ∈ V represents a fixation point, with attributes (pi, wi),
where pi denotes the spatial location of the fixation and wi represents
the duration of the fixation.

• Nodes are organized into subgraphs, each linked to a diagnostic phrase
in the radiology report. Thus, each subgraph signifies a decision or
observation in a specific diagnostic context, reflecting the interplay be-
tween gaze data and report interpretation.

• Directed edges (vi, vj) ∈ E within a subgraph represent transitions
between fixation points, modeling the temporal sequence in the radi-
ologist’s diagnostic process. Each edge (vi, vj) is assigned a weight dij
representing the Euclidean distance between fixation points vi and vj,
indicating how concentrated or dispersed the radiologist’s focus was
during diagnosis.

3.2.2. Structural Discrepancy Operator for Prior Construction

To enable LLM/LMM to focus on task-critical differences, we compute
a structural discrepancy operator on the graphs GT and GS. This operator
extracts a prior that encodes discrepancies, shifting the model’s attention to
essential variances without requiring sequential processing of the full multi-
modal data. Our structural discrepancy operator is defined as follows:

∆G(GT , GS) = (fmissing subgraphs(GT , GS),

fmissing nodes(GT , GS), freduced weights(GT , GS))

Where:

• fmissing subgraphs(GT , GS) identifies the missing subgraphs in GT that are
not isomorphic to any subgraph in GS,
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• fmissing nodes(GT , GS) identifies the nodes in GT that are part of missing
subgraphs and are not present in GS,

• freduced weights(GT , GS) identifies the nodes that are common to both
graphs but have reduced weights in GS.

Each function captures a distinct aspect of structural divergence:

Subgraph Matching: Identifying Missing Subgraphs.

fmissing subgraphs(GT , GS) = {s ⊆ GT | ∄t ⊆ GS, s ∼= t}

Where s is a subgraph of GT ; t is a subgraph of GS; ∼= denotes graph iso-
morphism (i.e., s and t are structurally identical).

The function fmissing subgraphs(GT , GS) returns subgraphs of GT that do
not have any isomorphic counterpart in GS. Two graphs GT = (VT , ET ) and
GS = (VS, ES) are isomorphic if there exists a one-to-one mapping f : VT →
VS such that: (u, v) ∈ ET ⇐⇒ (f(u), f(v)) ∈ ES The mapping f preserves
the graph’s structure.

Node Matching: Identifying Missing Nodes.

fmissing nodes(GT , GS) = {v ∈ Vs | v ∈ s,

s ∈ fmissing subgraphs(GT , GS) and v /∈ Vt}

Where s is a subgraph of GT ; Vs and Vt are the sets of nodes in GT and
GS, respectively; fmissing subgraphs(GT , GS) gives the set of subgraphs of GT

that do not have an isomorphic counterpart in GS. For each subgraph s in
GT , the function checks if the nodes v in s are present in GS (i.e., if v ∈ Vt).
The nodes v that belong to these subgraphs and are not present in GS are
identified as missing nodes.

Node Weight Comparison: Detecting Reduced Weights.

freduced weights(GT , GS) ={v ∈ VT ∩ VS |
w(v,GS) < w(v,GT )}

Where w(v,G) represents the weight (e.g., fixation duration) of the node
v in graph G; VT and VS are the sets of nodes in GT and GS, respectively.
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This function identifies the nodes that are common to both graphs GT

and GS but have reduced weights in GS compared to GT . Specifically, it
returns the set of nodes with a lower weight in GS than in GT .

In this framework, the discrepancy operator ∆G serves as a targeted tool,
isolating key structural discrepancies between GT and GS, and serving as a
prior for the LLM/LMM to streamline its reasoning by focusing on clinically
significant differences.

Figure 3: Illustration of the SCoT prompt. This prompt consists of two multimodal
structures (thought graphs) paired with a structural prior, guiding the model to identify
and reason about the differences between the multimodal data of the student and teacher
radiologists. The thought graphs are composed of interconnected subgraphs, each repre-
senting a specific thought or diagnosis within the radiology report. This structure enables
the model to analyze and compare subtle variations in the data, ultimately helping to
uncover the underlying causes of perceptual errors in radiology education.

3.2.3. SCoT Prompting with Prior

As shown in Figure 3, we enable effective multimodal reasoning by provid-
ing the LLM/LMM with structured representations GT , GS and differential
prior ∆G, utilizing chain-of-thought (CoT) prompting to guide the model
in identifying subtle but diagnostic differences between student and teacher
radiologist’s multimodal data.
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3.2.4. Prompted Comparison with CoT

To enhance the model’s ability to identify and explain differences between
the student and teaching radiologists, we employ Chain-of-Thought (CoT)
prompting. This guides the LLM/LMM to reason through the structural
discrepancy ∆G and provide an interpretable error attribution. We define
this process as:

Eerror = CoT(GT , GS,∆G)

where Eerror represents a structured output detailing deviations in diag-
nostic reasoning. The model focuses on clinically significant discrepancies
emphasized by ∆G, ensuring that the feedback is both interpretable and
relevant to diagnostic decision-making. A sample prompt used in the SCoT
framework is illustrated in Figure 3.

This structured error attribution, Eerror, enables the student radiologist to
pinpoint divergence points in their diagnostic process, linking these variations
to differences in gaze patterns and report interpretations. The feedback helps
refine their reasoning, highlighting areas for improvement based on direct
comparisons with the expert’s thought graph.

3.3. Reasoning evaluation

The reasoning process should be validated using structured questions (bi-
nary questions) to check whether the model’s attribution is accurate. To
evaluate the model’s output, we simulate data with predefined discrepancies
within classes of errors defined in the Dataset section. The model is then
tasked with classifying and explaining these simulated errors. To ensure rea-
soning accuracy, we pose a set of binary questions (0 or 1 responses) in JSON
format. Multi-label classification metrics, defined in the Experiments section,
are used to quantitatively assess the model’s output. These questions serve as
evaluative labels, and the model’s responses are evaluated using multi-label
classification metrics (precision, recall, F1 score) to benchmark its reasoning
performance and accuracy.

4. Datasets and Experiments

4.1. Dataset

The EGD-CXR dataset [60] consists of 1,083 chest X-ray (CXR) images
paired with synchronized eye-tracking and transcription data, annotated by
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an experienced radiologist. The eye-tracking data includes fixation coordi-
nates (x, y), the fixation duration, and the elapsed time (in seconds) from the
start of the recording captured using an eye tracker. Additionally, radiologi-
cal reports were generated by transcribing the radiologist’s verbal dictations
while analyzing specific regions of the CXR images, focusing on abnormali-
ties. These two multimodal signals—fixation data and textual reports—are
used to evaluate the effectiveness of our method in discerning complex inter-
actions among different types of signals.

4.2. Data Processing

The primary goal of this work is to develop a framework for comparing
the student and teacher radiology report and eye gaze pattern to provide
personalized recommendations to the student radiologist. However, due to
the unavailability of student radiologist data with perceptual errors, we sim-
ulate our own error dataset. The data processing is carried out in two main
steps: Fixation-Transcription Mapping and Error Data Synthesis.

4.2.1. Fixation-Transcription Mapping

In this step, we align sentence-level, timestamped text to the correspond-
ing fixation data of the radiologist on the medical image at specific instances.
For each sentence in the radiological report, we extract its start and end
timestamps, and then map these to the fixation data using the elapsed time
recorded by the eye tracker. The output is a synchronized dataset that pairs
spoken analysis of abnormalities with eye gaze fixation data. From the orig-
inal 1,083 samples in the EGD-CXR dataset, we successfully created 1,025
synchronized samples.

Error Type Number of Samples

Missing Fixation 432

Reduced Fixation Duration 432

Incomplete Knowledge 161

No Error 216

Total Samples 1241

Table 1: Distribution of error types and corresponding sample sizes in the dataset.
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4.2.2. Error Data Synthesis

The process of error data synthesis simulates perceptual errors in the
EGD-CXR dataset by introducing three types of errors: (i) missed abnor-
malities due to missing fixation, (ii) missed abnormalities due to reduced
fixation, and (iii) missed abnormalities due to incomplete knowledge. To
generate these errors, sentences are randomly removed from the accurate
transcription to represent missed abnormalities. Based on the error type, the
corresponding fixation data is modified: for the “Missing Fixation” error, the
fixation data within the relevant time range is removed; for the “Reduced
Fixation Duration” error, the fixation duration is reduced by 50%; and for
the “Incomplete Knowledge” error, no changes are made to the fixation data.

The dataset includes a mix of error types and samples with no errors.
Table 1 provides the distribution of the error types and the corresponding
sample sizes. As shown, there are 432 samples each for “Missing Fixation”
and “Reduced Fixation Duration,” while “Incomplete Knowledge” has 161
samples, and “No Error” includes 216 samples. In total, the dataset contains
1241 samples, providing a diverse set of cases to evaluate how well models
can discern different types of perceptual errors.

4.3. Experiments

In our experiments, we evaluate the performance of our proposed SCoT
prompting methodology and compare it to two baseline prompting approaches:
zero-shot (ZS) and few-shot (FS) CoT. For the ZS CoT baseline, we use a
generic CoT prompt to gauge the performance of SOTA CoT prompting
on multimodal thought graph comparison. For the few-shot CoT baseline,
we provide specific examples that demonstrate how to compare radiologists’
eye-gaze patterns and transcriptions, showing step-by-step reasoning. These
zero-shot and few-shot prompts are detailed in the supplementary section.
We apply these prompting strategies across various LLMs and LMMs with
different sizes, including Llama 3.2-Instruct (3B) [61], Llama 3.2 11B-Vision-
Instruct [61], Mistral 7B-Instruct-v0.3 [62], and GPT-4 [63], enabling us to
examine performance variations across model sizes, from smaller models to
GPT-4. To ensure consistency, we set the temperature to 0.2 across all mod-
els. We accessed GPT-4 via OpenAI API and other models, such as LLAMA
and Mistral, through Together.ai [64].
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Method
Evaluation Metrics

Accuracy ↑ Precision ↑ Recall ↑ F1 Score ↑ Hamming Loss ↓

Mistral-7B-Instruct-v0.3-ZS CoT 30.33 43.10 44.45 33.59 0.33
Mistral-7B-Instruct-v0.3-FS CoT 33.49 52.36 44.20 44.27 0.27
Mistral-7B-Instruct-v0.3-ZS-SCoT (Our) 76.39 85.00 84.53 83.70 0.08

LLAMA-3.2-11B-Vision-Instruct-ZS CoT 40.78 55.17 50.38 47.19 0.25
LLAMA-3.2-11B-Vision-Instruct-FS CoT 43.31 59.55 55.96 55.08 0.23
LLAMA-3.2-11B-Vision-Instruct-ZS-SCoT (Our) 80.00 88.81 90.52 88.97 0.06

GPT-4o-Mini-ZS CoT 25.46 60.10 81.60 64.84 0.30
GPT-4o-Mini-FS CoT 48.32 56.00 71.07 61.91 0.21
GPT-4o-Mini-ZS-SCoT (Our) 96.48 97.62 96.90 97.24 0.01

Table 2: Performance Comparison of SCoT with Baseline Methods Across Multiple Mod-
els. This table evaluates the SCoT framework against standard CoT prompting in zero-
shot and few-shot settings on the synthesized error dataset, highlighting its effectiveness
in improving multimodal reasoning across different LLM/LMM models.

4.3.1. Evaluation Metrics

Since we frame the task as a multilabel classification problem, we calcu-
late precision, recall, F1 score for each class and hamming loss to evaluate
the multilabel classification performance. In Table 2, we report the macro
precision, recall, and F1 score to provide a consolidated view of model per-
formance. To compute precision, recall, F1 scores for each class, we utilized
the classification report function from scikit-learn. This function allows
us to assess the classification performance for each individual class, present-
ing metrics such as precision, recall, and F1 score. To evaluate the overall
performance of the model, we employed the accuracy score function from
scikit-learn. It provides the sample-based accuracy, where a sample is consid-
ered correct only if all labels for that sample are correctly predicted. This is
strict, as even one incorrect label for a sample will make it count as incorrect.
In addition to accuracy, we calculated the Hamming loss to measure the frac-
tion of incorrect predictions across all classes and labels. The hamming loss

function from scikit-learn allows us to quantify the overall label prediction
errors, considering individual label mismatches rather than sample-based ac-
curacy alone.

5. Results & Discussion

5.1. Quantitative Results

Our results demonstrate that our proposed prompting strategy SCoT con-
sistently outperforms conventional CoT prompting across multiple LLM/LMM
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models, as shown in Table 2. By incorporating structural priors, SCoT effec-
tively guides model attention toward relevant multimodal features, leading
to significant improvements in key classification metrics, including accuracy,
precision, recall, and F1 score. Importantly, these performance gains are ob-
served across both zero-shot (ZS) and few-shot (FS) CoT, highlighting the
robustness of SCoT in effectevely handling the student and teacher thought
graphs with subtle differences. A particularly notable finding is that SCoT
outperforms few-shot CoT prompting, even in a zero-shot setting. This sug-
gests that structuring the reasoning pathway provides a more effective strat-
egy than simply increasing the number of demonstrations.

Among the tested models, GPT-4o-Mini-ZS-SCoT achieves the highest
overall performance, with an accuracy of 96.48 and an F1 score of 97.24,
demonstrating the effectiveness of structured reasoning in guiding model
decision-making. Similarly, LLAMA-3.2-11B-Vision-Instruct-ZS-SCoT out-
performs both its zero-shot and few-shot CoT counterparts, achieving an ac-
curacy of 80.00 and an F1 score of 88.97. Mistral-7B follows the same trend,
with SCoT yielding substantial improvements over standard CoT prompting.
These results highlight the ability of our structured approach to capture nu-
anced differences in thought graphs—differences that conventional reasoning
strategies often fail to recognize. Furthermore, we observe that larger mod-
els, such as LLAMA-3.2-11B and GPT-4o-Mini, tend to benefit more from
SCoT than smaller models like Mistral-7B. This suggests that greater model
capacity may enhance the ability to leverage structured priors effectively.
However, direct comparisons between models must be interpreted with cau-
tion, as differences in post-training mechanisms and architectural refinements
can also influence performance. To disentangle the effect of model size from
other factors, we conduct a controlled ablation study, which is detailed in
the following section.

5.1.1. Class Specific Performance

In this section, we evaluate the performance of our baseline prompting
strategies and SCoT across all error classes. Table 3 presents the class-wise
performance metrics using GPT-4o-Mini. This comparison highlights how
well different prompting methods detect perceptual errors made by student
radiologists, providing insights into their effectiveness for multimodal reason-
ing.

The results indicate that ZS and FS CoT struggle to accurately distin-
guish different types of gaze-based perceptual errors. In particular, the “In-
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Method
GPT-4o-Mini

Class Label Accuracy ↑ Precision ↑ Recall ↑ F1 Score ↑

ZS CoT Missing Fixation 64.97 54.83 95.83 69.76
Reduced Fixation 70.14 68.42 54.17 60.47
Incomplete Knowledge 43.51 18.52 76.40 29.82
No Error 99.70 98.63 100 99.31

FS CoT Missing Fixation 65.87 55.19 94.77 69.76
Reduced Fixation 75.54 69.01 74.58 71.69
Incomplete Knowledge 76.13 18.60 14.91 16.55
No Error 95.06 81.20 100 89.63

ZS SCoT Missing Fixation 98.92 99.53 97.92 98.72
Reduced Fixation 98.53 100 96.53 98.23
Incomplete Knowledge 98.14 94.94 93.17 94.04
No Error 99.12 96.00 100 97.96

Table 3: Class-Specific Performance of SCoT and Baseline Methods Using GPT-4o-Mini.
This table compares the SCoT framework with ZS CoT and FS CoT prompting strategies
across perceptual error classes, emphasizing its superior ability to detect and classify errors,
particularly in the ’Incomplete Knowledge’ category.

complete Knowledge” class presents a unique challenge, as it requires rea-
soning beyond gaze alignment. A student may exhibit similar gaze patterns
to an expert but still miss a finding due to a lack of knowledge. This de-
mands long-context reasoning, which baseline prompting strategies fail to
handle effectively, as seen in their poor F1 scores for this class. In contrast,
our proposed SCoT methodology significantly improves performance across
all classes. Notably, it provides a major boost for “Incomplete Knowledge,”
where prior information helps establish the connection between gaze behavior
and underlying expertise gaps. SCoT achieves an F1 score of 94.04, substan-
tially outperforming ZS CoT (29.82) and FS CoT (16.55). Additionally,
it achieves near-perfect classification for “Missing Fixation” and “Reduced
Fixation,” demonstrating its capability to distinguish between different error
types. These findings underscore the effectiveness of SCoT in handling com-
plex, long-context reasoning tasks crucial for radiology training. By lever-
aging structured reasoning with prior knowledge, our method enables more
accurate identification of perceptual errors, making it a promising tool for
automated feedback in medical education.
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5.2. Qualitative Results

Figure 4: Qualitative comparison of our method (SCoT) with baseline methods (ZS CoT
and FS CoT). The figure is divided into four quadrants (Q1, Q2, Q3, Q4), each presenting
a table with class-wise predictions for each method. Red-colored text in the radiology
report indicates abnormalities missed by the student, while the circles on the student’s
gaze pattern highlight subtle differences in gaze that contributed to the missed findings.
Cells in the table are highlighted for methods that achieved perfect accuracy without any
false positives.

To further evaluate the effectiveness of our SCoT prompting strategy, we
visualize few examples along with GPT-4o-Mini’s predictions compared to
baseline methods in Figure 4. The figure is divided into four quadrants (Q1,
Q2, Q3, Q4), each illustrating different cases that highlight the strengths
and limitations of our approach. In Quadrant 1, SCoT successfully identifies
that the student missed an opacity in the right lower lobe due to incomplete
knowledge, rather than due to missing or brief fixations. This distinction is
crucial, as the student’s and teacher’s gaze patterns are well-aligned, indi-
cating that the student visually explored the region but lacked the necessary
knowledge to recognize the abnormality. Unlike baseline methods, which
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struggle with this complex reasoning step, SCoT enables the model to fol-
low longer reasoning chains and correctly infer the underlying cause of the
error. Quadrants 2 and 3 further illustrate SCoT’s advantage in detecting
subtle differences in fixation patterns. For example, in these cases, the stu-
dent’s fixations in key regions—such as the lower lung—are slightly reduced
compared to the expert’s. While baseline models fail to capture these fine-
grained variations, SCoT effectively recognizes these small but meaningful
deviations and adjusts its predictions accordingly, demonstrating a height-
ened sensitivity to nuanced gaze differences. In Quadrant 4, we present a
failure case where SCoT misclassifies a brief fixation as a missed fixation.
This error suggests that while SCoT significantly enhances multimodal rea-
soning, some edge cases remain challenging, particularly when distinguishing
between brief and entirely absent fixations. These findings highlight areas
for further refinement, such as incorporating additional priors or fine-tuning
the model’s sensitivity to fixation duration thresholds.

5.2.1. Reasoning and Feedback Visualization

Figure 5: Illustration of the reasoning and feedback generated by GPT-4o-Mini using our
SCoT with prior prompting strategy. In both Case A and Case B, the model accurately
identifies the type of perceptual error and provides an explanation aligned with the stu-
dent’s gaze behavior. Red text highlights the missed finding and the reasoning behind it,
while green text represents actionable recommendations for the student to improve their
diagnostic approach.
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One of the key applications of our proposed strategy is the development
of a personalized teaching assistant for student radiologists. This assistant
is designed to identify missed abnormalities, analyze the underlying reasons
for these oversights, and provide tailored feedback based on the student’s
gaze patterns and search strategies. In this section, we present examples
of the reasoning and feedback provided by the LLM/LMM using our pro-
posed prompting strategy. The feedback not only helps detect errors, but
also explains why these errors occurred, offering personalized insights and
recommendations for improvement. Figure 5 illustrates the response pro-
duced by GPT-4o-Mini using our prompting approach. In both Case A and
Case B, the model not only identifies the nature of the student’s error but
also provides a meaningful explanation that aligns with the gaze data. This
feedback is crucial in guiding students toward a deeper understanding of
their perceptual mistakes and refining their search strategies. In Case B,
for example, the model correctly identifies that the abnormality was missed
due to brief fixation rather than complete omission. Although some fixation
points are present in the infra-hilar region, they are brief fixations to allow
for accurate abnormality detection. This pattern suggests the occurrence
of rapid saccades—quick, unstructured eye movements that prevent focused
visual processing. In clinical practice, such scanning behaviors can lead to
the oversight of subtle yet clinically significant abnormalities, particularly in
complex cases where fine-grained attention is necessary. Beyond just identi-
fying errors and corresponding reasoning, the model also provides actionable
recommendations to the student. It suggests increasing fixation time on crit-
ical regions, engaging in more case studies, and discussing findings with peers
and mentors to reinforce learning.

5.3. Response time comparison

The response times for the three prompting strategies (ZS CoT, FS CoT,
and ZS SCoT) show notable differences, as illustrated in Figure 6. The ZS
CoT baseline has a mean response time of 5.908 seconds with a variance of
3.271, indicating that while its response time is relatively quick, it fluctuates
considerably depending on the complexity of the task. FS CoT, on the other
hand, demonstrates a slightly lower mean response time of 5.247 seconds with
a variance of 1.052, suggesting that the few-shot approach is more consistent
in its performance, but it still lacks the multimodal reasoning capabilities
that ZS SCoT provides. The ZS SCoT strategy, with a mean response time
of 6.481 seconds and a variance of 3.364, shows a slightly higher process-
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ing time but offers a more stable performance across varying tasks, despite
the added complexity of multimodal data processing. The slight increase
in response time can be attributed to the more complex graph processing
involved, which is more demanding than handling simple text. However, the
increase in response time is justified by the strategy’s improved accuracy, as
it is better able to detect and analyze complex perceptual errors compared to
the baseline methods. In clinical practice, where precision is paramount, the
stability and accuracy provided by ZS SCoT despite the slightly higher re-
sponse time make it a preferable option for educational feedback in radiology,
offering a balance between performance and processing demands.

Figure 6: Comparison of response times for GPT-4o-Mini using ZS CoT, FS CoT, and our
proposed zero-shot structured chain-of-thought ZS SCoT prompting strategies.

6. Ablations

We perform comprehensive ablation study on the simulated error dataset
with the GPT-4o-Mini model. Detailed performance of each ablation exper-
iment is included in the supplementary experiment section.
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TG I Accuracy ↑ Precision ↑ Recall ↑ F1-Score ↑ Hamming Loss ↓

✓ ✗ 96.48 97.62 96.90 97.24 0.01
✓ ✓ 95.43 96.20 95.20 95.70 0.02

Table 4: Ablation Study: Impact of Different Data Components on Performance Metrics.
TG represent the Thought graph and I represent the CXR Image.

Ablation with data: In this ablation experiment, we assess the impact of
incorporating CXR image data (I) in our proposed SCoT prompting strat-
egy. As shown in Table 5, the inclusion of CXR image (I) did not lead
to a significant improvement in performance or enhancement of the model’s
reasoning process. This finding suggests that the textual and gaze pattern
information utilized within the SCoT strategy already provides sufficient con-
text for making accurate decisions, particularly when identifying perceptual
errors in radiology. The lack of notable improvement from adding image
data underscores a key strength of our model: its ability to function effec-
tively with limited multimodal input, particularly in a zero-shot reasoning
context. This characteristic allows our approach to remain lightweight and
highly adaptable, making it applicable across a range of domains without
relying on specialized image data. The model’s ability to focus on textual
inputs, gaze patterns, and reasoning strategies enables it to perform well,
even in situations where image data may not be easily accessible or practical
to use.
Prior: In this ablation study, we investigate how incorporating a structural
prior, achieved through a Structural Discrepancy Operator, affects the per-
formance of our SCoT framework. We compare two configurations: (1) using
only two Thought Graphs(TG) without the prior(P) and (2) using both the
Thought Graphs and the structural prior. As shown in Table 5, combining
the Thought Graphs with the structural prior yields the best performance
across all metrics, including accuracy, precision, recall, and F1 score. This
result highlights the importance of the structural prior in enabling the model
to capture fine-grained differences between multimodal signals effectively.
With model size: We evaluated our approach using models of varying sizes
to understand the impact of model parameters on performance. Specifically,
we tested smaller models, such as LLAMA 3.2 with 3 billion parameters,
and larger models, like LLAMA 3.2 11B Vision-Instruct with 11 billion pa-
rameters. As the model size and parameter count increase, we observe a
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P TG Accuracy ↑ Precision ↑ Recall ↑ F1-Score ↑ Hamming Loss ↓

✗ ✓ 23.57 62.57 79.32 63.94 0.29
✓ ✓ 96.48 97.62 96.90 97.24 0.01

Table 5: Ablation Study: Impact of structural prior on SCoT Prompting. TG represent
the Thought graph and P represent the Priors.

notable improvement in performance. As shown in Figure 7B, the model
with 11 billion parameters significantly outperforms the model with 3 billion
parameters. This suggests that larger models benefit from enhanced capacity,
contributing to better overall results.

Figure 7: Effect of model size and priors on the performance of SCoT. (A) The impact
of various priors on the model’s multimodal reasoning ability in radiology, demonstrating
that priors such as reduced fixation duration lead to significant performance improvements.
(B) A comparison of model performance across different sizes, from the 3-billion parameter
LLAMA 3.2 to the 11-billion parameter LLAMA 3.2 11B Vision-Instruct, highlighting the
substantial performance gains achieved with larger models.

Effect of Prior: In this ablation experiment, we investigate the marginal
effect of different priors in radiology education to understand which compo-
nents most effectively enhance the multimodal reasoning capabilities of LLMs
and LMMs. This study is conducted using GPT-4o-Mini, which demon-
strated significant performance improvements when priors were incorporated
into the structured prompting approach. As illustrated in Figure 7A, our
results reveal that different priors contribute to performance to varying de-
grees. For instance, priors such as reduced fixation duration notably im-
prove the model’s ability to reason multimodally, while other priors show a
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relatively smaller effect. Crucially, when all three priors are combined, the
model achieves the highest performance, enhancing its capability to differ-
entiate subtle differences in the eye gaze patterns of student and teacher
radiologists. This suggests that, while each prior serves a role in improving
the model’s interpretative abilities, certain priors have a more pronounced
influence on guiding the model’s reasoning within the radiology education
framework. These findings underscore the importance of identifying the most
impactful priors for optimizing model performance, particularly in medical
AI applications. By understanding the relative contributions of each prior,
we can make more targeted improvements to AI-driven educational tools,
enhancing their effectiveness in radiology training and potentially in other
medical domains where accurate decision-making and nuanced reasoning are
critical.

7. Limitations & Future work

While this study primarily focuses on the methodological and theoretical
development of a framework designed to enhance the multimodal reasoning
capabilities of LLMs and LMMs for radiology education, there are several
limitations that need to be acknowledged. One key limitation is the lack of
a publicly available dataset specifically capturing student radiologists’ errors
and gaze patterns. As a result, we simulated an error dataset, which, while
useful, may not fully represent the complexities of real-world error scenarios
and the nuanced gaze patterns of students during radiological tasks. This
work serves as a proof of concept, and further research is required to adapt
the framework for direct clinical application, where real-world data would
be crucial for evaluating its practical effectiveness. Additionally, our model
incorporates a limited number of priors, focusing on structural discrepancy
operators. While this approach is effective in the context of our study, it may
not account for all the possible types of prior knowledge needed in real-world
scenarios. The structural discrepancy operator is, however, quite generaliz-
able, and future research can build upon it by integrating more sophisticated
prior models that account for additional complexities within radiology train-
ing and other medical fields. Thus, while this framework provides a solid
foundation, further refinement and validation are necessary to ensure its
broader applicability and effectiveness in clinical and educational settings.

Looking ahead, we plan to conduct a user study to evaluate the real-
world utility of our framework by developing a full web-based application.
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This application would enable interaction with students in a controlled set-
ting, allowing us to collect valuable feedback on model performance, user
experience, and its potential impact on radiology education.

8. Conclusion

In conclusion, this paper introduces the SCoT framework, designed to
enhance the multimodal reasoning capabilities of LLMs and LMMs in radi-
ology education. By integrating thought graphs and structural priors, SCoT
enables models to perform fine-grained comparisons, identifying subtle dis-
crepancies in diagnostic tasks. Our experiments demonstrate that SCoT
significantly improves the model’s ability to provide context-sensitive feed-
back, utilizing gaze patterns and transcriptions to offer personalized insights
into the decision-making processes of both novice and expert radiologists.
While the framework showed a slight increase in processing time compared
to baseline methods, this was justified by its improved accuracy and capabil-
ity in detecting complex perceptual errors. The results highlight the potential
of SCoT to enhance radiology training by providing students with detailed
feedback on missed abnormalities, ultimately helping them refine their di-
agnostic skills. To further advance research, we are releasing a simulated
dataset and envision that SCoT will continue to evolve as a valuable tool
in radiology education, improving the quality and efficiency of training for
future radiologists.
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