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Abstract. Radiology students often struggle to develop perceptual ex-
pertise due to limited time for expert mentorship, leading to errors in
visual search patterns and diagnostic interpretation. These perceptual
errors—such as missed fixations, brief dwell times, or misinterpreta-
tions—are not adequately addressed by existing AI systems, which focus
on diagnostic accuracy but fail to explain how and why errors occur. To
bridge this gap, we propose MAARTA (Multi-Agentic Adaptive Radi-
ology Teaching Assistant), a multi-agent framework that analyzes gaze
patterns and radiology reports to provide personalized feedback. Un-
like single-agent models, MAARTA dynamically recruits agents based
on error complexity, ensuring adaptive and efficient reasoning. By lever-
aging thought graphs to compare expert and student gaze behavior, the
system identifies missed findings and assigns Perceptual Error Teacher
(PET) agents to analyze discrepancies. Using Chain-of-Thought (CoT)
prompting, MAARTA generates meaningful insights, helping students
understand their errors and refine their diagnostic reasoning, ultimately
enhancing AI-driven radiology education.

Keywords: Multi-agent systems · Large Multimodal Models (LMMs) ·
Agents · Thought Graphs · Perceptual Error Teacher(PET)

1 Introduction

Radiology education requires learners to develop both technical knowledge and
perceptual expertise [10,26,27]. However, a major challenge in this domain is the
limited availability of expert feedback [5]. Due to demanding clinical workloads,
radiologists often lack the time for personalized mentoring, leaving students with-
out the necessary guidance to refine their diagnostic skills [2]. However, master-
ing radiology is not just about knowing what abnormalities look like—it is also
about knowing where and how to look [17,25]. Perceptual errors in radiology
are deeply connected to eye gaze behavior [7,24]. These errors often occur due
to three reasons [7]: (1) a student may fail to fixate on the abnormality at all,
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meaning they never searched for it—similar to the “satisfaction of search” effect,
where once one abnormality is found, further searching is neglected; (2) they
may fixate on the abnormal region but for too short a duration, suggesting they
looked but did not process the abnormality sufficiently; or (3) they may follow a
reasonable gaze pattern but still miss the diagnosis due to a lack of experience
or knowledge. These subtle lapses in attention allocation can lead to diagnostic
mistakes, yet no AI-driven solution currently explains why these errors occur.

Recent advancements in AI, particularly Large Language Models (LLMs) and
Large Multimodal Models (LMMs), offer a unique opportunity to bridge this
gap. While these models have been explored for tasks such as automated report
generation [22] and clinical decision support [14,21], they remain underutilized
in providing personalized feedback on perceptual errors in diagnostic interpre-
tation. Existing AI systems evaluate whether a diagnosis is correct but do not
consider how a student arrived at their decision—a crucial aspect of perceptual
learning. By integrating eye-tracking data with diagnostic reports, LLMs and
LMMs can move beyond outcome-based assessments and offer real-time insights
into how a student’s visual attention compares to that of an expert, provid-
ing a more nuanced and personalized feedback mechanism. However, due to the
complexity of analyzing multimodal data, particularly eye gaze patterns and
radiology reports, existing systems struggle to process such information effec-
tively. Single-agent LLM/LMM models must attempt to handle entire datasets,
gaze patterns, reports, and diagnostic insights within a single prompt. This often
leads to inefficiencies and the potential loss of critical information [3].

To address this challenge, we propose MAARTA (Multi-Agentic Adaptive
Radiology Teaching Assistant), a novel multi-agent LMM framework designed
to analyze perceptual errors and provide personalized feedback to student ra-
diologists. Unlike traditional single-agent AI systems, which struggle with long-
context reasoning and multimodal data interpretation [19,29,18], MAARTA lever-
ages a distributed, adaptive approach where multiple LLM/LMM agents work
in parallel and independently to analyze differences between expert and stu-
dent gaze patterns. This framework dynamically adjusts the number of reason-
ing agents based on error complexity, ensuring an efficient, scalable, and inter-
pretable feedback mechanism. The following are the main contributions of our
work.

– Personalized Perceptual Error Feedback: We propose a framework that
analyzes a student’s eye gaze data and report to explain why they missed a
particular finding, offering personalized feedback to improve diagnostic skills.

– Adaptive Multi-Agent Framework: We introduce MAARTA, a multi-
agent system that dynamically recruits LLM/LMM agents based on error
complexity to process multimodal data efficiently, enhancing reasoning ca-
pabilities while maintaining scalability.

– Simulated Perceptual Error Dataset: We release a novel simulated
dataset focused on perceptual errors in radiology, enabling further research
into the reasoning capabilities of LLMs and LMMs for understanding diag-
nostic mistakes and improving AI-driven feedback mechanisms.



MAARTA:Multi-Agentic Adaptive Radiology Teaching Assistant 3

Fig. 1. Overview of the proposed methodology. (A) Thought graph generation process
from eye gaze data. (B) Structure of the thought graphs representing expert and student
gaze patterns. (C) Key modules of MAARTA for adaptive agent recruitment. (D)
Workflow of PET agents in analyzing gaze sub-patterns and identifying perceptual
errors. The red line indicates the separation between subfigures.

2 Methodology

2.1 Background:

Multi-agent LLMs and LMMs represent a shift from single-model reasoning to
collaborative intelligence, where multiple LLM/LMM agents work together to
solve complex tasks [11,12]. Inspired by human teamwork, these systems dis-
tribute the cognitive load across specialized agents, enhancing efficiency, adapt-
ability, and robustness [11]. Researchers have applied multi-agent LLMs and
LMMs to fields such as scientific discovery [8] and medicine [16,23], where agents
collaboratively address subproblems before synthesizing their insights. Multi-
agent systems adopt centralized, decentralized, or hybrid architectures, balanc-
ing control and flexibility, while orchestration ensures seamless collaboration
through task division, conflict resolution, and adaptability[11].
Multi-Agent systems in Medicine: Multi-agent LLMs and LMMs have demon-
strated success in various medical applications, including radiology report gen-
eration [23], medical decision-making [16], and histopathology analysis with
PathFinder [9]. These systems employ specialized agents to address specific sub-
problems, integrating their insights to enhance diagnostic accuracy and decision-
making. However, the use of multi-agent systems in medical education remains
underexplored. Most studies rely on a fixed number of agents and lack meth-
ods for dynamically adjusting the agent count to optimize both accuracy and
computational efficiency.
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2.2 Problem Statement

This study explores whether an adaptive multi-agent system can provide per-
sonalized feedback to radiology students. The challenges addressed include:

– Determining the optimal number of agents for analyzing multimodal data.
– Understanding how error complexity influences the number of agents needed

for effective and efficient reasoning.

Since gaze patterns and search strategies differ between learners and teachers,
the number of agents should adapt based on the complexity of missed findings,
optimizing computational efficiency.

2.3 Mathematical Formulation

We model gaze data as matrices for both the teacher (T) and student (S), rep-
resented as DT , DS ∈ Rt×d, where t denotes the number of time steps and d
represents fixation features. The corresponding radiology reports, RT and RS ,
are aligned with gaze fixations using a transformation function f , which con-
structs thought graphs GT and GS . These graphs encode diagnostic reasoning as
directed scene graphs, providing a more structured approach to prompt design.
This process is visually represented in Figure 1A.

As illustrated in Figure 1B, each thought graph consists of nodes representing
fixation points with spatial coordinates and durations, while edges define tran-
sitions between fixations. These graphs are further divided into subgraphs, each
corresponding to a specific diagnostic finding (or thought), enabling meaningful
alignment between visual attention and diagnostic interpretation.

2.4 Complexity-Adaptive Multi-Agent Reasoning

Inspired by [4], MAARTA adaptively determines the number of agents based
on the complexity of missed diagnostic observations. Let GT = (VT , ET ) and
GS = (VS , ES) be the teacher’s and student’s thought graphs, with the number
of subgraphs nT and nS . The number of missed diagnostic findings is:

∆n = |nT − nS | (1)

Each subgraph in GT that is missed by the student is compared against
all subgraphs in GS , as the student’s cognitive process involves all available
subgraphs. Therefore, the error complexity score is defined as:

Cerror = ∆n · nS (2)

where Cerror quantifies the total number of subgraph comparisons required
for reasoning. The number of agents required for reasoning is determined as a
function of the error complexity:

Nagents = f(Cerror)
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Where, f(Cerror) represents a general functional relationship between error
complexity and the number of agents (Nagents). For our experiments, we assume
a linear relationship and recruit agents directly based on Cerror. This assumption
is empirically tested to evaluate its validity and explore additional influencing
factors. The formulation ensures adaptive scaling of agents with task complex-
ity, enabling parallelized reasoning and improved diagnostic accuracy. By lever-
aging distributed problem-solving principles, MAARTA balances computational
efficiency and diagnostic performance.

2.5 MAARTA: Multi-Agentic Adaptive Radiology teaching Assiatnt

The proposed framework, MAARTA, is designed to adaptively recruit agents
based on the complexity of perceptual errors in radiology education, as illustrated
in Figure 1C. The framework consists of the following main components:
Principal LLM (Global Reasoning Coordinator): This agent processes
the student’s and teacher’s thought graphs GS = (VS , ES) and GT = (VT , ET ),
computes the difference in the number of subgraphs ∆n, and identifies the missed
findings. The error complexity score Cerror is then computed in the next step to
determine how many agents should be recruited.
Error Complexity Calculation (ECS): This step calculates the error com-
plexity score Cerror, which determines the number of PET agents. If the error
complexity score Cerror is zero, then no agents are recruited, as there are no
perceptual errors to analyze.
Perceptual Error Teachers (PETs): For each missed finding in the stu-
dent’s thought graph GS , a Perceptual Error Teacher (PET) agent is assigned
to analyze the corresponding gaze pattern. Each PET agent focuses on a spe-
cific subgraph gS ⊂ GS , which represents the student’s fixations and durations
associated with a particular diagnostic finding. It then compares this with the
teacher’s corresponding gaze subgraph gT ⊂ GT , assessing whether the student’s
gaze behavior aligns with expert attention patterns.

Using Chain-of-Thought (COT) prompting, PET agents perform structured
reasoning to determine if the student failed to fixate on the abnormality, exhib-
ited brief fixation duration, or demonstrated a gaze pattern indicative of incom-
plete knowledge. Since different regions of an image may receive varying levels
of attention based on experience, each PET agent evaluates a localized segment
of the student’s thought process, as shown in Figure 1D. By systematically com-
paring gaze distributions across subgraphs, PET agents identify perceptual dis-
crepancies that contribute to the missed finding. Once all PET agents complete
their analysis, their findings are aggregated to derive a structured explanation
of the reasoning behind the student’s diagnostic error. This enables an inter-
pretable and targeted feedback mechanism, allowing the student to understand
and refine their perceptual strategies.
Consolidator LLM (Final Decision Aggregator): The reasoning for all
missed findings are consolidated using a logical OR operation to generate the
final error explanation for each case. In addition to this consolidated output, our
system also provides detailed reasoning for each individual missed finding. The
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final result F is structured as a JSON output, offering personalized feedback to
the student based on the analysis of perceptual errors.

3 Dataset & Experimentation

Dataset: The EGD-CXR dataset [15] contains 1,083 chest X-ray (CXR) im-
ages with synchronized eye-tracking and radiology report transcription data from
an experienced radiologist.
Simulated Error Data: Since no public dataset captures student radiolo-
gist perceptual errors, we simulate perceptual errors using EGD-CXR. Our
pipeline consists of two steps: (1) Fixation-Transcription Mapping, where we
align sentence-level timestamps from reports with gaze data, yielding 1,025
mapped samples; (2) Error Synthesis, introducing three error types: (i) Missed
Fixation, where finding fixations are removed; (ii) Reduced Fixation, where fixa-
tion durations are halved; and (iii) Incomplete Knowledge, where fixations remain
unchanged, but transcriptions are altered to mimic misinterpretation. This pro-
cess generates a balanced dataset for evaluating MAARTA’s ability to detect
perceptual mistakes. Dataset statistics are detailed in the supplementary file.
Experiments: We compare MAARTA against two baselines: (1) a single-agent
LLM/LMM processing reports and gaze data without graph-based reasoning,
and (2) a single-agent system incorporating scene graphs. Models are evaluated
using zero-shot chain-of-thought (ZS-CoT) prompting across different architec-
tures, including Llama 3.2-Instruct (3B) [6], Llama 3.2 11B-Vision-Instruct [6],
Mistral 7B-Instruct-v0.3 [13], and GPT-4o [20]. To ensure consistency, we set the
temperature to 0.2. GPT-4o is accessed via the OpenAI API, while the Llama
and Mistral models are accessed via Together.ai [1]. We implement MAARTA
using the AutoGen framework [28], enabling dynamic multi-agent coordination.
Evaluation Metrics: We formulate this task as a multilabel classification prob-
lem, where each instance may involve multiple types of perceptual errors. Perfor-
mance is evaluated using subset accuracy (the proportion of instances where the
predicted set of error types exactly matches the true set), macro-averaged pre-
cision, recall, F1-score (calculated per error type and averaged), and Hamming
loss (the fraction of incorrectly predicted error labels).

4 Results & Discussion

Quantitative Results: Table 1 compares MAARTA with baseline models,
demonstrating consistent performance gains in all metrics. In particular, GPT-
4o-Mini benefits significantly from the multi-agent reasoning of MAARTA, with
improvements in accuracy (75.00 vs. 25.46 and 23.57) and the F1 score (83.00
vs. 64.84 and 63.94) compared to its single-agent counterparts. Mistral-7B also
sees improvements, though smaller, with accuracy increasing to 33.00 from 30.33
and 15.00, and F1 score rising to 53.00 from 33.59 and 38.50. Similarly, LLaMA-
3.2-11B-Vision shows gains, with accuracy improving to 50.20 from 40.78 and
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Table 1. Performance comparison of different LLM/LMM models across baselines and
MAARTA

Single Agent
Model Accuracy ↑ Precision ↑ Recall ↑ F1 Score ↑ Hamming Loss ↓
Mistral-7B-Instruct-v0.3-ZS CoT 30.33 43.10 44.45 33.59 0.33
GPT-4o-Mini-ZS CoT 25.46 60.10 81.60 64.84 0.30
LLAMA-3.2-11B-Vision-Instruct-ZS CoT 40.78 55.17 50.38 47.19 0.25

Single Agent with Thought Graph
Mistral-7B-Instruct-v0.3-ZS CoT 15.00 38.21 44.09 38.50 0.40
GPT-4o-Mini-ZS CoT 23.57 62.57 79.32 63.94 0.29
LLAMA-3.2-11B-Vision-Instruct-ZS CoT 16.32 50.27 65.94 49.48 0.39

MAARTA (Ours)
Mistral-7B-Instruct-v0.3-ZS CoT 33.00 53.00 63.00 53.00 0.30
GPT-4o-Mini-ZS CoT 75.00 82.00 87.00 83.00 0.09
LLAMA-3.2-11B-Vision-Instruct-ZS CoT 50.20 62.00 79.00 69.00 0.19

16.32, and the F1 score increasing to 69.00 from 47.19 and 49.48. These re-
sults suggest that larger models, such as GPT-4o-Mini and LLaMA-3.2-11B-
Vision, leverage distributed reasoning more effectively, whereas smaller models
like Mistral-7B benefit to a lesser extent. Although structured thought graphs
enhance interpretability, incorporating them into single-agent prompts can in-
troduce excessive complexity and degrade performance. MAARTA overcomes
this by partitioning the input graph among specialized agents, reducing cogni-
tive load and thereby improving both reasoning efficiency and accuracy. Despite
leveraging multiple agents, MAARTA remains computationally efficient. For the
GPT-4o-Mini model, the mean response time with multi-agent reasoning was
13.17 seconds, compared to 13.42 seconds for the single-agent counterpart. This
slight difference highlights that MAARTA enhances reasoning capabilities with-
out sacrificing computational efficiency. Furthermore, our results indicate that
a multi-agent approach can enhance LLM/LMM capabilities in analyzing large
graphs. A detailed breakdown of class-specific performance and response times
is provided in the supplementary file.
Qualitative Results: Figure 2 illustrates the sample cases from our simulated
error dataset, highlighting the reasoning process of MAARTA. I-1 and I-2 are in-
put cases, while O-1 and O-2 are the corresponding outputs. In I-1, The student
fails to detect pleural effusion on both sides of the lungs, primarily due to inad-
equate visual attention to the affected regions. Although a single fixation point
is present, it does not translate into an accurate identification of the finding.
MAARTA successfully predicts the missed finding and provides a detailed ex-
planation behind the omission. I-2 shows the example where the student misses
the finding because they did not focus on the area of interest long enough.
Ablation: We conducted two ablation experiments using the GPT-4o-Mini
model on our simulated error dataset: (1) adaptive PET agent assignment based
on error complexity, and (2) the impact of PET agent communication.
Adaptive PET Agents: This experiment is performed on the complete error
dataset. As shown in Table 2, dynamically assigning PET agents based on error
complexity function improves performance compared to assigning a number of
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Fig. 2. Qualitative results: MAARTA’s reasoning in detecting missed findings.

Table 2. Ablation study comparing different agent selection strategies and communi-
cation effects using GPT-4o.

Adaptive Agents
Method Accuracy ↑ Precision ↑ Recall ↑ F1 Score ↑ Hamming Loss ↓
Agents Based on Number of Errors 66.43 75.00 78.00 75.00 0.13
Agents Based on Error Complexity Function 75.00 82.00 87.00 83.00 0.09

Communication
Without Communication 66.10 77.00 89.00 82.00 0.11
With Communication 31.37 8.00 25.00 12.00 0.36

agents solely based on the number of errors. Figure 2 (B) illustrates the relation-
ship between error complexity score and Hamming loss across different model
sizes. While larger models exhibit a consistent trend, smaller models experience
performance degradation when the number of agents increases beyond a certain
threshold. This suggests that the number of agents is not a simple linear function
of error complexity but also depends on model size.
PET Agent Communication: We evaluated the impact of inter-agent com-
munication by allowing PET agents to exchange information during the compar-
ison phase. In 100 randomly selected samples, performance dropped when agents
communicated, indicating that independent PET agents are more effective for
our problem. This drop is likely due to communication overhead or misalignment
when agents process different subgraphs of the thought graphs.



MAARTA:Multi-Agentic Adaptive Radiology Teaching Assistant 9

5 Limitations and Future Work

Although MAARTA demonstrates the technical feasibility of gaze-informed per-
ceptual feedback for chest radiograph interpretation, its clinical utility requires
validation through real-world user studies. A key challenge is the lack of public
gaze datasets for CT and MRI scans, which currently restricts the evaluation to
chest radiographs. To address this, we are collecting gaze-annotated private mul-
timodal data to expand the applicability of MAARTA. Additionally, the current
linear mapping between error complexity and agent count will be refined using
potentially non-linear data-driven functions.

6 Conclusion

MAARTA revolutionizes AI-based radiology education by offering personalized
feedback on perceptual errors, shifting from passive evaluation to an active learn-
ing approach. This adaptive system enhances diagnostic training and opens the
door for scalable AI-assisted medical education, enabling cognitive skill assess-
ment and individualized mentorship at scale.
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