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Figure 1: From existing gaze datasets (e.g., EGD and REFLACX) that are illustrated in the left image, existing research on
gaze-assisted medical AI primarily focus on developing systems to assist radiologists by performing tasks such as disease
classification, report generation, or mimicking visual search patterns through scanpath prediction tasks. Our work extends
apart from these tasks and focuses on understanding radiologists by interpreting the radiologist’s intention behind each of
their captured gaze points.

Abstract
Radiologists rely on eye movements to navigate and interpret med-
ical images. A trained radiologist possesses knowledge about the
potential diseases that may be present in the images and, when
searching, follows a mental checklist to locate them using their gaze.
This is a key observation, yet existing models fail to capture the
underlying intent behind each fixation. In this paper, we introduce
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a deep learning-based approach, RadGazeIntent, designed to model
this behavior: having an intention to find something and actively
searching for it. Our transformer-based architecture processes both
the temporal and spatial dimensions of gaze data, transforming fine-
grained fixation features into coarse, meaningful representations of
diagnostic intent to interpret radiologists’ goals. To capture the nu-
ances of radiologists’ varied intention-driven behaviors, we process
existing medical eye-tracking datasets to create three intention-
labeled subsets: RadSeq (Systematic Sequential Search), RadExplore
(Uncertainty-driven Exploration), and RadHybrid (Hybrid Pattern).
Experimental results demonstrate RadGazeIntent’s ability to predict
which findings radiologists are examining at specific moments, out-
performing baseline methods across all intention-labeled datasets.
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1 Introduction
Radiologists rely on eye movements to navigate and interpret med-
ical images, leading to a natural question: "what are they trying
to find at this moment?" Most current works attempt to mimic
radiologists to create digital twins rather than using data from
them to understand them, which could be crucial in interactive
systems. To the best of our knowledge, no existing work deciphers
the underlying intentions behind each fixation in medical imaging
analysis.

As shown in Table 1, existing Aritificial Intelligence approaches
(AI) fall short in intention prediction. I-AI [38], despite design-
ing models to mimic radiologist decision-making processes, only
focuses on predicting heatmaps (spatial information) without ex-
plaining the purpose of each fixation. Similarly, EyeXNet [20], while
using fixation data, takes full heatmaps as input without consid-
ering temporal characteristics, and is used for localization rather
than explaining fixation meaning. The work most similar to ours is
ChestSearch [39], which predicts how a radiologist would view an
chest X-ray (CXR) image given a specific finding to search for. How-
ever, it is limited to a single finding, whereas in reality, radiologists
look for multiple findings, and each gaze point does not always
serve only one class, leading to complex relationships. Further-
more, the GazeSearch data from ChestSearch significantly reduce
fixation points from the original data, which would be difficult to
implement in real scenarios for an interactive system. In contrast,
our RadGazeIntent model directly takes the fixation sequence and
chest X-ray image to predict which finding each fixation is used to
identify, along with confidence scores.

Because we strive to understand radiologists’ intentions, we de-
signe our model based on the premise that eye movements [36]
provide a window into cognitive processes. We conceptualize in-
tention through three complementary perspectives as illustrated in
Figure 1: First, intention may manifest as a systematic sequential
search where radiologists follow a mental checklist, targeting spe-
cific findings sequentially and perform medical visual search tasks
sequentially [39]. Second, intention could reflect uncertainty-driven
exploration, where radiologists respond opportunistically to visual
cues without predetermined targets, in practice, this means that for
a predefined set of findings, radiologists identify and report what-
ever they happen to observe [12]. Third, intention might follow
a hybrid pattern where radiologists initially conduct a brief refer-
ence scan of the entire image before focusing intently on a single

pathology, effectively combining the systematic and opportunistic
approaches [7]. In this paper, we cannot completely rule out any
of these possibilities, so we process the original data and evaluate
all methods across multiple definitions to provide the most com-
prehensive perspective. To support these different interpretations
of radiologist behavior, we introduce three corresponding datasets:
RadSeq (Systematic Sequential Search), RadExplore (Uncertainty-
driven Exploration), and RadHybrid (Hybrid Pattern). Each dataset
represents a different conceptualization of how radiologists allocate
their visual attention during diagnosis.

Tomodel the intention behind each fixation, we use a transformer-
based architecture called RadGazeIntent to model gaze sequences
with three major characteristics: incorporating both peripheral
and foveal information to mimic the visual information humans
perceive [51], ensuring fixation information adheres to causality
(earlier fixations cannot access information from later ones), and
recognizing that fixations are not independent but complementary
to each other, meaning adjacent fixations can be combined into
more complex features. This approach allows our model to learn
patterns from "fine-grained and noisy" fixation data and transform
them into "coarse and abstract representations that cluster only the
most relevant information." Our RadGazeIntent model employs a
transformer architecture with a pooling mechanism to achieve this
transformation.

Our main contributions include:
• Benchmark: Three new benchmark datasets, RadSeq, Rad-
Explore, and RadHybrid, representing different conceptual-
izations of radiologist’s intention.

• RadGazeIntent: A novel framework, RadGazeIntent, for
classifying radiologists’ fixations according to their under-
lying intentions, bridging the gap between visual search
patterns and diagnostic reasoning.

• Evaluation: A comprehensive evaluation across multiple
settings for predicting radiologist intentions, demonstrat-
ing our model’s ability to generalize across varied intention
definitions and consistently outperform baseline approaches.

2 Related Work
2.1 Gaze-Assisted Medical AI
General gaze prediction models have been on a rise from both static
saliency prediction [1, 6, 8, 15, 17, 22, 24, 27] and scanpath predic-
tion [9, 10, 13, 26, 28, 35, 40, 43, 51–53]. For example, DeepGaze
III [26] and Gazeformer [35] use deep learning to predict scanpaths
in free-viewing tasks. Chen et al. [11] advance this with individual-
ized scanpath prediction. However, these methods lack adaptation
to medical contexts.

Recent approaches integrate medical gaze data into AI frame-
works. Karargyris et al. [25] introduce a chest X-ray dataset with
eye-tracking, but did not align gaze patterns with diagnostic labels.
I-AI [38] is a system decoding radiologists’ focus, primarily mimick-
ing expert attention by predicting gaze heatmap. Pham et al. [39]
then introduce GazeSearch for radiology findings search, focusing
on scanpath prediction rather than intention.

A key limitation across these efforts is the absence of explicit
alignment between gaze sequences and diagnostic intention. They
do not interpret why a radiologist fixates on a region, whether for
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Table 1: Comparison of previous works on eye tracking assistance methods. Most existing works using eye tracking datasets
primarily utilize information in heatmap form (spatial modeling) to solve problems within their corresponding settings.
Recently, ChestSearch [39] has focused on the visual search problem and proposed models to incorporate temporal information.
It is also notable that a temporal classifier proposed by Karargyris et al. [25] can model temporal aspects by using RNNs on
heatmaps of gaze sequences. However, despite having both temporal and spatial modeling capabilities, no existing work has
tackled the problem of understanding the intention behind each gaze point.

Methods Temporal Modeling Spatial Modeling Intention Interpretation Tasks

I-AI [38] ✗ ✓ ✗ Disease Classification
GazeRadar [4] ✗ ✓ ✗ Disease Localization
EGGCA-Net [37] ✗ ✓ ✗ Report Generation
EyeXNet [20] ✗ ✓ ✗ Disease Localization
Karargyris et al. [25] ✓ ✓ ✗ Disease Classification
ChestSearch [39] ✓ ✓ ✗ Scanpath Prediction

RadGazeIntent (Ours) ✓ ✓ ✓ Intention Interpretation

systematic search, uncertainty, or hybrid strategies as we do in
our framework. Moreover, Neves et al. [36] provide a review of
gaze-driven interpretability in radiology, also confirming this gap
and calling for AI models that decode expert intent, a challenge
that our work directly addresses.

2.2 Multi-Label Findings Classification
Multi-label classification of radiological findings has seen signif-
icant progress with deep learning [2, 18, 21, 29, 31–33, 41, 44, 45,
50, 54], particularly for chest X-rays. CheXNet [41] demonstrated
radiologist-level pneumonia detection using a convolutional neu-
ral network (CNN), while Irvin et al. [23] introduced CheXpert, a
large dataset with uncertainty labels for multi-label classification.
Wu et al. [48] further advanced this with the Chest ImaGenome
dataset, incorporating clinical reasoning via anatomical annota-
tions. Transformer-based models have also been applied to this
task. Taslimi et al. [44] used Swin Transformers for multi-label
chest X-ray classification, achieving robust performance across
findings. Wang et al. [47] proposed a multi-granularity cross-modal
alignment framework, integrating text and image features for gen-
eralized representation learning. These works excel in identifying
multiple pathologies but rely solely on image data, ignoring gaze-
informed supervision that could reveal diagnostic priorities.

Unlike these approaches, our model integrates gaze sequences with
multi-label classification, focusing on predicting not what findings
are present but which finding a radiologist is examining at a given
moment.

3 Methodology
3.1 Problem Formulation
We formulate the task of fixation-based intention interpretation
as a sequence labeling problem. Given a series of 𝑇 eye fixations
F = {𝑓1, 𝑓2, . . . , 𝑓𝑇 } where each fixation 𝑓𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑑𝑖 ) consists of
spatial coordinates (𝑥𝑖 , 𝑦𝑖 ) and duration 𝑑𝑖 . Each fixation may be
associated with one of 𝐾 possible intentions, reflecting the obser-
vation that multiple consecutive fixations typically correspond to
a single cognitive process. We denote the ground truth intention
label for each fixation as 𝐿 = {𝑙1, 𝑙2, . . . , 𝑙𝑇 } where 𝑙𝑖 ∈ {0, 1}𝐾 . Our

goal is to identify the underlying user intentions that generated
these fixations.

3.2 Architecture: RadGazeIntent
The proposed framework processes a CXR through a sequential
pipeline as shown in Figure 2: Starting with CXR images and fixa-
tion data, the Feature Extraction module generates peripheral and
foveal feature maps. These features are passed to the Structural Em-
beddingmodule, which encodes spatial and temporal characteristics
of the fixation sequence. The embedded features are then processed
by the Peripheral-aware Causal Self-Attention mechanism to in-
tegrate contextual dependencies. Finally, the Intention Decoder
classifies the diagnostic purpose of each fixation and outputs corre-
sponding confidence scores for relevant radiological findings.
Feature Extraction. The goal of this step is to create a feature
pyramid to represent both peripheral visual information and fovea
visual information of an image. For an input image 𝐼 ∈ R𝐻×𝑊 ,
we use a Feature Pyramid Network (FPN) [30] with ResNet [19]
backbone to obtain pyramid features {𝑃1, 𝑃2, 𝑃3, 𝑃4} with varying
resolutions. We select 𝑃𝑙 = 𝑃1 ∈ R𝐶×𝐻/32×𝑊 /32 with the lowest
resolution to represent peripheral visual information and 𝑃ℎ = 𝑃4 ∈
R𝐶×𝐻/4×𝑊 /4 with the highest resolution to represent fovea visual
information.
Structural Embedding. This component embeds the fixation se-
quence into meaningful features that represent: (1) feature rele-
vance to image content, (2) 2D spatial properties, (3) temporal
sequence information. First, we perform Fovea Mapping by extract-
ing features from the corresponding spatial locations (𝑥𝑖 , 𝑦𝑖 ) in
the fovea feature map 𝑃ℎ , mapping a point (𝑥,𝑦) to the feature
at block (𝑥/4, 𝑦/4) based on the scale of 𝑃ℎ . In total, we obtain
𝐸𝑓 = {𝑒1, 𝑒2, . . . , 𝑒𝑇 } ∈ R𝐶×𝑇 corresponding to 𝑇 input fixations,
wehre 𝑒𝑖 ∈ R𝐶 is the embedded feature of the 𝑖𝑡ℎ fixation.

Then, we apply 2D Spatial Embedding [14] to embed 2D spa-
tial information into the feature representation using sinusoidal
functions, followed by 1D Temporal Embedding [46] which incor-
porates sequence order information by encoding the sequential
position 𝑡 of each fixation point. After embedding, we obtain struc-
tural embedded fixation feature 𝐸𝑓 . Simultaneously, we flatten 𝑃𝑙
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Figure 2: Overall framework of RadGazeIntent. RadGazeIntent aims to analyze medical image fixation patterns to determine
diagnostic intentions. The Feature Extraction module processes a input CXR to create two distinct feature maps, peripheral (𝑃𝑙 )
for general context and fovea (𝑃ℎ) for detailed focus areas. The Structural Embedding module transforms fixation coordinates
into feature representations using the fovea feature map (𝑃ℎ). This module incorporates both spatial (2D) and temporal (1D)
structural information to maintain the relationship between fixation points. Then the Peripheral-aware Causal Self Attention
is a specialized attention mechanism that enables the model to learn features for each fixation in context. It references
peripheral-level image information while preserving causality, i.e. ensuring that earlier fixations cannot access information
from later ones, with the help of Peripheral-aware Causal Mask𝑀 (see Eq. (1)). Our implementation stacks 𝐿𝑒 blocks of this
attention mechanism. The Intention Decoder uses a Pool Attention module to condense the token representation. These
condensed tokens are processed through 𝐿𝑑 blocks of cross-attention and self-attention layers, followed by linear and sigmoid
layers. This produces confidence scores for specific diagnostic findings, such as "Cardiomegaly?, "Consolidation" and "Support
Devices," as shown in the top right of this figure.

into multiple tokens 𝑃𝑙 ∈ R𝐶×(𝐻𝑊 /1024) and also apply 2D spatial
embedding to these tokens. We then concatenate the embeddings
into a single vector 𝐸𝑠 = [𝑃𝑙 , 𝐸𝑓 ] ∈ R𝐶×(𝐻𝑊 /1024+𝑇 ) and pass it to
the next step.
Peripheral-aware Causal Self Attention. This specialized self-
attention mechanism incorporates peripheral information while
maintaining causality in the sequence processing. It uses a Peripheral-
aware Causal Mask that allows each fixation to access all preceding
fixations and peripheral information but prevents access to future
fixations. As we have a total of 𝐻𝑊 /1024 + 𝑇 tokens, we need a
mask 𝑀 with the size of (𝐻𝑊 /1024 + 𝑇 ) × (𝐻𝑊 /1024 + 𝑇 ). We
create Peripheral-aware Causal Mask as:

M𝑖 𝑗 =

{
0 if 𝑖 > 𝑗 or 𝑗 ∈ [1, 𝐻𝑊 /1024]
−∞ otherwise

(1)

where 𝑖, 𝑗 ∈ [1, 𝐻𝑊 /1024 +𝑇 ] corresponding to row and column
indexes.

Attention(Q,K,V) = softmax

(
QK𝑇 +M√︁

𝑑𝑘

)
𝑉 (2)

whereQ is the query,K is the key,V is the value, created by passing
𝐸𝑠 through separate Linear layers [46],𝑀 is the Peripheral-aware
Causal Mask, and 𝑑𝑘 is the hidden dimension of K.

This self-attention block transforms our encoded features into a
deep latent space representing both image and fixation information
simultaneously. Multiple (𝐿𝑒 ) layers of this attention mechanism
are applied to capture complex relationships. After this step, we
obtain the contextualized feature 𝐸′𝑠 = [𝑃𝑙 ′ , 𝐸′

𝑓
], where 𝑃𝑙 ′ is a

global information and 𝐸′
𝑓
is the fixation feature. In this module,

𝑃𝑙
′
aims to enrich context information to 𝐸′

𝑓
, so we split and only

use 𝐸′
𝑓
for the next step.

Intention Decoder. The role of the Intention Decoder is to explic-
itly filter out noise and capture more complex patterns that rep-
resent intentions and then decode that features into the intention
behind each fixation. Intuitively, intentions typically span multi-
ple fixations. Thus, we use Pool Attention to compress the feature
sequence 𝐸′

𝑓
, reducing from 𝑇 tokens to fewer tokens, 𝐸∗

𝑓
. Next,

Self-Attention and Cross-Attention layers allow each feature token
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Figure 3: Illustration of our dataset creation process, which
transforms the original eye-tracking data into three dis-
tinct experimental settings: RadSeq (Systematic Sequential
Search), RadExplore (Uncertainty-driven Exploration), and
RadHybrid (Hybrid Pattern). Beginning with a full scanpath
showing radiologist fixation points (green and yellow) on
a chest X-ray, we apply uncertainty filtering to isolate fixa-
tions that fall outside annotated findings, forming RadEx-
plore, which models exploratory behavior under diagnostic
uncertainty. In this example, we extract fixations for three
findings: Cardiomegaly, Consolidation, and Pleural Effusion.
Next, we implement Gazesearch’s constraints [39] to con-
vert RadExplore into pathology-focused fixations, creating
RadSeq, which simulates systematic and targeted search. To
construct RadHybrid, we merge the extracted initial scan
from the first few seconds (see Section 4.1) with RadSeq to
capture a behavior pattern that begins with broad scanning
and transitions into focused searching.

from 𝐸′
𝑓
to query and select the most appropriate latent features rep-

resenting underlying intentions from 𝐸∗
𝑓
. This process is repeated

for 𝐿𝑑 layers. Finally, a Linear layer transforms the decoder output
into the intention space, and a Sigmoid layer normalizes values
between 0 and 1, providing confidence scores for specific findings
such as "Cardiomegaly," "Consolidation," and "Support Devices" as
shown in the Figure 2.
Objective Function. The proposed problem of fixation interpre-
tation can be formulated as a multi-label classification task, so we
use binary cross-entropy as our loss function:

L = − 1
𝑇𝐾

𝑇∑︁
𝑖=1

𝐾∑︁
𝑘=1

[
𝑙𝑖𝑘 log(𝑙𝑖𝑘 ) + (1 − 𝑙𝑖𝑘 ) log(1 − 𝑙𝑖𝑘 )

]
(3)

where 𝑙𝑖 is the ground truth label, 𝑙𝑖 is the predicted probability.

4 Experiments
4.1 Datasets
To investigate the intention behind each radiologist’s gaze, we
derive three intention-labeled datasets by post-processing two pub-
licly available gaze datasets, EGD [25] and REFLACX [5], under
distinct behavioral assumptions that reflect plausible visual search
strategies [3, 12, 39]. Figure 3 illustrates the overview of our data

(a) Fixation Length Distribution. (b) RadSeq

(c) RadExplore (d) RadHybrid

Figure 4: Statistical analysis of eye fixation patterns across
different datasets. (a) Histogram showing the overall dis-
tribution of fixation lengths, with most fixations concen-
trated between 25-75 points. (b-d) Box plots displaying fix-
ation length distributions across 13 radiological findings
for three different datasets: RadSeq, RadExplore, and Rad-
Hybrid. Each box plot represents the median, interquartile
range, and outliers of fixation lengths for specific medi-
cal findings. The abbreviated labels correspond to: Atel (At-
electasis), Card (Cardiomegaly), Cons (Consolidation), Edem
(Edema), Enl_CM (Enlarged Cardiomediastinum), Fract (Frac-
ture), Lung_L (Lung Lesion), Lung_O (Lung Opacity), Pl_Eff
(Pleural Effusion), Pl_Oth (Pleural Other), Pneu (Pneumonia),
Pneumo (Pneumothorax), and Sup_Dev (Support Devices).

processing steps. The three newly introduced intention-labeled
datasets are as follows:
RadExplore: Uncertainty-Driven Exploration.This dataset con-
siders intention as opportunistic visual search [12], assuming radi-
ologists do not follow a fixed order and may consider all report find-
ings simultaneously. This reflects maximal ambiguity: all fixations
are potentially relevant to any finding, leaving intention disam-
biguation to later modeling stages. Formally, let 𝑆 = {𝑠1, 𝑠2, ..., 𝑠 |𝑆 | }
be the sequence of sentences in the transcript, where each sentence
has an end time 𝑠𝑒

𝑗
, and {𝜏𝑖 }𝑇𝑖=1 is the set of captured timestampt for

{𝑓𝑖 }𝑇𝑖=1 fixations. We use CheXbert [42] to find the corresponding
class for all sentences and produce 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐 |𝑆 | }. Then we
compute the ground truth labels as:

l𝑖𝑘 =

{
1 if there exists 𝑗 ∈ [1, |𝑆 |] such that 𝜏𝑖 ≤ 𝑠𝑒𝑗 and 𝑘 = 𝑐 𝑗

0 otherwise
(4)

where 𝑖 ∈ [1,𝑇 ] indexes fixations and 𝑘 ∈ [1, 𝐾] indexes intention
labels. We refer to this step as Uncertainty Filtering.
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RadSeq: Systematic Sequential Search. This dataset assumes
radiologists follow a sequential checklist of findings [39] and solely
focus on searching clues for a particular finding at a time. Gaze-
search’s constraints [39] comprise of two procedures: radius-based
filtering and time-spent constraining. Using these constraints on
RadExplore, we obtain the beginning time beg𝑘 and end time end𝑘
for all 𝐾 intentions in the report 𝑆 . Then we compute the ground
truth labels as:

l𝑖𝑘 =

{
1 if 𝜏𝑖 ∈ [beg𝑘 , end𝑘 ]
0 otherwise

(5)

Unlike the original paper [39], we set the radius to zero in the
radius-based filtering procedure to avoid discarding any fixation
points, thereby preventing a reduction in the temporal and spatial
information of the fixations.
RadHybrid: Hybrid Pattern. According to [3], a radiologist’s
intention leads to a two-phase search process where radiologists
begin with a broad overview and later narrow focus to specific
pathologies. To get the "broad overview" behavior, we extract the
scanning fixations within the first 𝜏∗ seconds. Often, 𝜏∗ is 1 second
according to [7]. Finally, we merge initial scanning fixations with
RadSeq:

𝑙𝑖𝑘 =

{
1 if 𝜏𝑖 ≤ 𝜏∗ or 𝜏𝑖 ∈ [beg𝑘 , end𝑘 ]
0 otherwise

(6)

where 𝜏∗ = 1 is the initial scanning time.
Each of the three datasets, RadSeq, RadExplore, and RadHybrid,

is derived from the same source of eye tracking data, i.e., 1,079
samples from EGD and 2,483 samples from REFLACX. Figure 4
illustrates the patterns in radiologists’ eye fixation behavior across
different radiological findings. The histogram shows most fixations
are relatively brief (25-75 points), though with some longer outliers.
Across all three datasets (RadSeq, RadExplore, and RadHybrid),
certain conditions consistently demand longer fixation lengths, par-
ticularly Lung Lesions and Fractures, which stand out with higher
median values and wider interquartile ranges, suggesting these
conditions may require longer visual attention during diagnosis.

4.2 Compared Baselines
We compare our approach against several baselines representing
different architectural paradigms: We compare our model against
a range of existing approaches that capture different modeling
assumptions for intention prediction from radiologist gaze data.
MLP. This baseline uses a multilayer perceptron that processes
each fixation independently. Each input fixation is first mapped
with fovea feature like in our framework. Then they are passed
through three fully connected layers (512, 256, 𝐾 units) with ReLU
activations, where 𝐾 denotes the number of intention classes. Fi-
nally the latent features are passed through a sigmoid layer for
multi-label classification. This model lacks any temporal modeling
or spatial aggregation over time.
LSTM. A sequential model that encodes temporal dynamics in gaze
behavior using a unidirectional LSTM. Similar to MLP, we also
use mapped fovea features to represent the fixation token features.
Then we use the LSTM decoder on the fixation token features. The
model has 256 hidden units with a dropout rate of 0.2 between

layers. The final hidden state is projected to the intention space via
a fully connected layer. Finally the projected features are passed
through a sigmoid layer for multi-label classification.
Karargyris et al. [25]. This model first transforms fixation se-
quences into spatial heatmaps using Gaussian kernels. The input
CXR and these heatmaps are passed through a ResNet-18 CNN
encoder, followed by a bidirectional LSTM (256 hidden units), a tem-
poral convolutional layer, and a final classification head. Unlike the
original implementation in [25], we modify the final classification
head: instead of predicting three classes, we apply the classification
head separately for each token to get the multi-label prediction.
ChestSearch [39]. This baseline is originally designed for the Gaze-
Search dataset. We change the final decoder heads of ChestSearch
from decoding heatmaps to a classifier for predicting intention.

All deep learning models are trained with the Adam optimizer,
initial learning rate of 1e-4 with cosine annealing schedule, and
for the same number of epochs (100) with early stopping based on
validation performance to ensure fair comparison.

4.3 Implementation Details
We use a Pyramid Feature Network with ResNet-50 backbone [19]
as the Feature Extractor, initialized from a checkpoint pre-trained
using MGCA [47] for 50 epochs with a batch size of 144. This
Feature Extractor is frozen when we train the full pipeline. We
stack 𝐿𝑒 = 4 Peripheral-aware Causal Self Attention layers with
hidden size 𝐷 = 384 and 𝐻 = 8 attention heads.

To reduce sequence length and retain complex features, we apply
a pooling attention layer [16] with stride of 2 and kernel size of
5 tokens. The Intention Decoder contains 𝐿𝑑 = 6 blocks of self-
attention and cross-attention. We train the entire model for 4,000
iterations using the AdamW optimizer [34], with a learning rate of
1 × 10−5 and a batch size of 32. All experiments are conducted on a
single NVIDIA A6000 GPU with 48GB of RAM.

We then evaluate intention predictors using a set of classifica-
tion metrics, i.e., Accuracy (ACC), F1-score (F1), Precision (P), and
Recall (R), for every pair of fixation-intention. We run 5-fold cross
validation and report 95% confidence interval in Section 4.4.

4.4 Quantitative Results
Table 2 presents the quantitative performance of our proposed
model compared to four baseline methods (MLP, LSTM, Karargyris
et al., and ChestSearch) across two eye-tracking sources (EGD and
REFLACX), evaluated under three datasets representing different
intention perspectives: RadExplore, RadSeq, and RadHybrid.

In RadSeq, the higher F1-scores (72.05% for EGD and 69.87%
for REFLACX) reflect the model’s ability to accurately capture the
radiologist’s systematic sequential scanning. Baseline models, par-
ticularly simpler ones like MLP and LSTM, struggle to model the
temporal order of fixations, resulting in lower accuracy and re-
call. Thanks to our transformer-based architecture, RadGazeIntent
effectively models these sequential dependencies.

As shown in Figure 4, RadExplore exhibits much longer fixation
sequences than RadSeq, requiring a greater number of predictions.
Despite this, RadGazeIntent continues to demonstrate robustness.
For instance, its precision scores (72.25% for EGD and 70.89% for
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Table 2: Performance comparison across two datasets (EGD and REFLACX) with 95% confidence intervals (±). Metrics include
Accuracy (ACC), F1-score (F1), Precision (P), and Recall (R).

Datasets
Data Sources Model EGD REFLACX

ACC (%) F1 (%) P (%) R (%) ACC (%) F1 (%) P (%) R (%)

RadSeq

MLP 73.87 (±1.3) 49.14 (±1.6) 62.16 (±1.5) 51.40 (±1.8) 82.55 (±1.2) 52.33 (±1.4) 58.90 (±1.6) 54.76 (±1.3)
LSTM 81.23 (±1.5) 56.77 (±1.4) 59.12 (±1.3) 54.89 (±1.7) 79.98 (±1.7) 55.21 (±1.5) 60.01 (±1.3) 53.43 (±1.4)
Karargyris et al. 84.02 (±1.2) 61.88 (±1.2) 64.77 (±1.1) 59.45 (±1.0) 81.22 (±1.1) 59.34 (±1.2) 63.15 (±1.1) 56.70 (±1.3)
ChestSearch 87.35 (±1.0) 68.20 (±1.0) 70.11 (±1.2) 66.30 (±1.1) 85.02 (±1.0) 65.44 (±1.0) 68.21 (±1.2) 63.70 (±1.1)
Ours 88.85 (±0.7) 72.05 (±0.9) 74.01 (±1.0) 70.51 (±0.9) 86.92 (±0.9) 69.87 (±0.9) 72.12 (±1.0) 67.90 (±0.9)

RadExplore

MLP 72.45 (±1.4) 50.32 (±1.5) 59.20 (±1.6) 52.10 (±1.3) 81.00 (±1.3) 51.44 (±1.5) 56.70 (±1.3) 50.33 (±1.4)
LSTM 80.33 (±1.6) 53.88 (±1.3) 57.78 (±1.5) 52.04 (±1.4) 78.45 (±1.5) 54.11 (±1.3) 58.20 (±1.3) 51.80 (±1.3)
Karargyris et al. 83.12 (±1.2) 60.45 (±1.1) 62.99 (±1.1) 58.77 (±1.0) 80.76 (±1.3) 57.44 (±1.3) 61.02 (±1.2) 55.21 (±1.1)
ChestSearch 86.44 (±0.9) 66.10 (±1.1) 68.30 (±1.2) 64.55 (±1.0) 84.01 (±1.0) 63.11 (±1.0) 66.90 (±1.1) 61.22 (±1.0)
Ours 87.95 (±0.8) 70.14 (±0.9) 72.25 (±1.0) 68.01 (±0.9) 85.40 (±0.8) 67.33 (±0.9) 70.89 (±1.0) 65.92 (±0.9)

RadHybrid

MLP 72.12 (±1.3) 48.99 (±1.4) 60.45 (±1.5) 50.77 (±1.3) 80.01 (±1.3) 50.22 (±1.4) 55.10 (±1.2) 49.85 (±1.4)
LSTM 79.80 (±1.5) 52.77 (±1.3) 55.89 (±1.4) 50.43 (±1.5) 77.33 (±1.4) 51.10 (±1.3) 56.01 (±1.2) 48.88 (±1.2)
Karargyris et al. 83.56 (±1.1) 58.60 (±1.1) 61.90 (±1.2) 56.45 (±1.0) 79.66 (±1.2) 56.77 (±1.1) 60.44 (±1.3) 54.90 (±1.1)
ChestSearch 86.22 (±0.9) 65.77 (±1.0) 67.91 (±1.1) 63.80 (±1.0) 83.45 (±0.9) 62.70 (±1.0) 65.11 (±1.0) 60.88 (±1.0)
Ours 88.21 (±0.8) 71.11 (±0.8) 73.20 (±0.9) 69.88 (±0.8) 86.02 (±0.8) 68.44 (±0.9) 71.55 (±0.9) 66.78 (±0.8)

REFLACX) suggest that our model better infers the intent behind
each fixation, even amidst uncertainty, compared to the baselines.

Finally, in RadHybrid, our model consistently outperforms all
baselines across both datasets, with notable gains in recall (69.88%
for EGD and 66.78% for REFLACX), highlighting its ability to cap-
ture both broad overview and focus scanning phases. Baseline
models, except ChestSearch, lack mechanisms to disentangle these
phases, leading to lower F1-scores as they conflate coarse and fine-
grained fixations. Our model’s improvement over ChestSearch is
attributed to its pooling mechanism, which enables the separation
of exploratory and focused patterns from the input fixations.

Overall, the quantitative results validate the effectiveness of our
framework across all three intention definitions, establishing a
strong benchmark for intention interpretation.

4.5 Qualitative Results
In this section, we present a qualitative analysis of our model’s
ability to interpret radiologists’ fixation patterns and predict their
underlying intentions during medical image analysis.

Figure 5 presents a qualitative comparison of radiologist inten-
tion prediction results across three experimental settings and var-
ious intentions. Our proposed model demonstrates superior per-
formance compared to both baseline approaches (Karargyris et al.
and ChestSearch), with prediction closely resembling ground truth.
This is evidenced by the prevalence of green fixation points (cor-
rect predictions) in our model’s results across all settings, while
the competing approaches show considerably more red indicators
(incorrect predictions). RadExplore and RadHybrid display denser
fixation sequences overall, but our performance is still maintained
and remains similar to the case with the fewest points, which is Rad-
Seq. These qualitative results reinforce the quantitative advantage
of our approach in accurately predicting radiologists’ diagnostic
intentions.

4.6 Ablation Study
Table 3 presents an ablation study to assess the impact of removing
key components from our full model, providing insights into the

importance of each element in capturing radiologists’ gaze inten-
tions. The study examines the effects of removing Pool Attention,
1D Temporal Embedding, 2D Spatial Embedding, Peripheral Fea-
tures, and Fovea Mapping, highlighting their individual roles in the
model’s ability to accurately interpret gaze patterns.
w/o Pool Attention. In this setting, we remove the Pool Attention
layer and use 𝐸′

𝑓
directly in the Cross Attention module. This leads

to a moderate drop in performance (1.29–2.81%), highlighting its
role in aggregating features that capture overall intent patterns
across fixations.
w/o 1D Temporal Embedding. We remove the 1D Temporal Em-
bedding block from the Structural Embedding module. Eliminating
temporal encoding removes explicit modeling of fixation order,
thereby discarding the temporal dynamics of visual attention. This
results in a significant performance decline (4.34–4.68%), confirming
that temporal progression is vital for understanding intention.
w/o 2D Spatial Embedding. We remove the 2D Spatial Embed-
ding block from the Structural Embedding module. Without spa-
tial embedding, the model no longer receives location-aware cues
about where fixations occur on the image. The performance drop
(3.24–6.67%) indicates that spatial context is also important.
w/o Peripheral Feature. This configuration excludes the coarse-
resolution features 𝑃𝑙 . As a result, the Peripheral-aware Causal Self
Attention blocks perform causal self-attention solely on fixation fea-
tures, without incorporating the broader contextual features from
𝑃𝑙 . The performance drops (4.76–6.67%) suggest that peripheral in-
formation, though less detailed than foveal features, contributes to
understanding scene context and supports intention interpretation.
w/o Fovea Mapping. In this setting, we replace the Fovea Map-
ping with a 2D layout embedding based on coordinates [49], com-
monly used in document understanding. This effectively removes
the high-resolution foveal features 𝑃ℎ and replaces them with stan-
dard 2D spatial embeddings. This leads to the most severe degra-
dation (11.73–12.12%), indicating that high-resolution features are
crucial for identifying subtle diagnostic cues, especially during fine-
grained examination phases. Their absence impairs the model’s
ability to localize fixation intent around medically salient regions.



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trong Thang Pham, Anh Nguyen, Zhigang Deng, Carol C. Wu, Hien Nguyen, and Ngan Le
G

ro
un

d
tru

th
O

ur
s

Ka
ra

rg
yr

is
et

 a
l.

C
he

st
Se

ar
ch

AtelectasisCardiomegaly Consolidation AtelectasisCardiomegaly Pleural effusion Lung opacityCardiomegalyAtelectasis
RadSeq RadExplore RadHybrid

Figure 5: Qualitative comparison of radiologist intention prediction results across three datasets and various intention classes.
The visualization presents chest X-rays with overlaid fixation points organized in a matrix format where columns represent
different pathological findings across datasets, and rows represent different prediction methods: Ground truth, Our proposed
model, Karargyris et al.’s approach, and ChestSearch. The input for the model is the full fixation sequence, and model’s objecive
is to predict the intention class for each point. represents correct prediction (i.e., confidence score of a fixation is greater
than 0.5) and denotes incorrect prediction.

These results demonstrate that spatial and temporal cues, along
with multi-scale visual processing (foveal and peripheral), are es-
sential for effectively interpreting radiologists’ gaze intentions.

Table 3: Ablation study on architectural components across
different intention datasets. Metric: The average of F1-score
(%) on both eye tracking sources (EGD and REFLACX).

Model Configuration RadSeq RadExplore RadHybrid

Full Model 71.01 68.74 69.78

w/o Pool Attention 68.20 67.45 68.01
w/o 1D Temporal Embedding 66.33 64.10 65.44
w/o 2D Spatial Embedding 67.77 62.89 63.11
w/o Peripheral Feature 64.34 63.45 65.02
w/o Fovea Mapping 58.92 57.01 57.66

5 Conclusion
Discussion. In this work, we introduce a novel paradigm for inter-
preting radiologists’ eye movements through the lens of intention,
shifting the focus from mimicry-based modeling to a cognitively
grounded understanding of visual search behavior. Our RadGazeIn-
tent framework classifies each fixation point by its likely diagnostic
purpose. We further propose three datasets, RadSeq, RadExplore,
and RadHybrid, each representing a distinct observation of how
radiologists allocate visual attention in practice. These settings al-
lowed us to empirically test competing theories of gaze behavior

in radiology, from structured checklist-based scanning to reactive
exploration. Experiments show RadGazeIntent consistently outper-
forms existing baselines across all datasets.

Limitations. Despite these advances, several limitations remain.
First, "intention" is inherently abstract and cannot be directly ob-
served in eye tracking datasets, we infer intention from our obser-
vations on radiologist’s behavior, which may not perfectly reflect
cognitive processes. Second, while we model intention at the indi-
vidual fixation level, not all fixations may map cleanly to a specific
diagnostic objective (early or exploratory phases of scanning). This
ambiguity introduces inherent noise that may confound classifica-
tion. Finally, while conceptually diverse, our datasets focus exclu-
sively on chest X-rays;; radiologists’ behaviors in other imaging
modalities, e.g., CT or MRI, may follow different patterns. Future
work presents exciting opportunities to extend our work to other
modalities, potentially revealing universal patterns of expert visual
reasoning.

Broader Impact. By decoding the intent behind radiologists’
gaze behavior, our approach opens new pathways for develop-
ing interactive, intention-aware systems that can collaborate with
rather than replace human experts. Potential applications include
gaze-guided report generation, intention-aware assistance during
training, and real-time feedback systems that adapt to a user’s
diagnostic focus. Furthermore, understanding gaze intent has im-
plications beyond radiology. For example, in surgical navigation,
pathology slide review, and even education platforms that teach
visual diagnostic skills.
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