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Purpose: To develop a collaborative AI system that integrates eye gaze data and radiology 
reports to improve diagnostic accuracy in chest radiograph interpretation by identifying and 
correcting perceptual errors. 

Materials and Methods: This retrospective study utilized public datasets REFLACX and EGD-
CXR to develop a collaborative AI solution, named Collaborative Radiology Expert (CoRaX). It 
employs a large multimodal model to analyze image embeddings, eye gaze data, and radiology 
reports, aiming to rectify perceptual errors in chest radiology. The proposed system was 
evaluated using two simulated error datasets featuring random and uncertain alterations of five 
abnormalities. Evaluation focused on the system’s referral-making process, the quality of 
referrals, and its performance within collaborative diagnostic settings. 

Results: In the random masking-based error dataset, 28.0% (93/332) of abnormalities were 
altered. The system successfully corrected 21.3% (71/332) of these errors, with 6.6% (22/332) 
remaining unresolved. The accuracy of the system in identifying the correct regions of interest 
for missed abnormalities was 63.0% [95% CI: 59.0%, 68.0%], and 85.7% (240/280) of 
interactions with radiologists were deemed satisfactory, meaning that the system provided 
diagnostic aid to radiologists. In the uncertainty-masking-based error dataset, 43.9% (146/332) of 
abnormalities were altered. The system corrected 34.6% (115/332) of these errors, with 9.3% 
(31/332) unresolved. The accuracy of predicted regions of missed abnormalities for this dataset 
was 58.0% [95% CI: 55.0%, 62.0%], and 78.4% (233/297) of interactions were satisfactory. 

Conclusion: The CoRaX system can collaborate efficiently with radiologists and address 
perceptual errors across various abnormalities in chest radiographs. 

©RSNA, 2025 

The proposed system, CoRaX, demonstrated potential to aid radiologists in detection of 
abnormalities on chest radiographs by identifying and correcting perceptual errors. 

 



	
 

	

Abbreviations: 

CoRaX = Collaborative Radiology Expert, LMM = Large multimodal model, TR = True 
Referral, FR = False Referral, FD = False Deferral, TD = True Deferral, PECR = Perceptual 
Error Correction Rate, ODER = Over-Diagnosis Error Rate, STARE = Spatio-Temporal 
Abnormal Region Extractor, MAF = Missing Abnormality Finder 

Key Points:  

• A collaborative AI system, CoRaX, was developed to aid radiologists in the detection of 
abnormalities on chest radiographs. 

• CoRaX corrected 21.3% (71 of 332) and 34.6% (115/332) of errors, defined as alterations 
in abnormalities, in the two simulated error datasets. 

• In a collaborative diagnostic setting, the system had a non-zero interaction score in 85.7% 
(240/280) and 78.4% (233/297) of interactions for the error datasets, indicating its potential to 
aid radiologists in diagnostic decision-making. 

Artificial intelligence (AI) systems play an increasingly important role in health care decision-
making, particularly in diagnostic processes (1–4). However, their integration faces challenges, 
especially in standalone systems that generally overlook human interaction (5,6). Use of such 
systems may lead to decreased diagnostic accuracy due to varying levels of trust among medical 
professionals (7–10). Collaborative Intelligence offers a promising solution by emphasizing 
human-AI synergy to enhance accuracy, notably in radiology. 

A key challenge in radiology is the prevalence of perceptual errors, which significantly impact 
diagnostic accuracy. These errors occur when radiologists fail to detect or correctly interpret 
abnormalities due to visual oversights during the initial interpretation (11,12). Research indicates 
that perceptual errors are responsible for most diagnostic mistakes, ranging from 60 to 80% (13). 
Addressing these perceptual errors is critical to improve diagnostic performance (14). While 
there are various insights into the causes and potential manual solutions for perceptual errors 
(14), no AI-based solutions currently address these errors based on the individual visual search 
patterns of radiologists. 

Eye gaze serves as a valuable sensing modality in human-computer interaction (15), fostering 
dynamic collaboration between radiologists and AI systems (16). Existing studies have shown a 
direct correlation between eye movements and radiologist’s diagnostic decisions (17–19), 
making eye-tracking data crucial to understand the visual search process (20–26) and reducing 
diagnostic errors (18,19). Furthermore, eye gaze recording is non-intrusive and can be 
seamlessly integrated into clinical workflows.  

This study aims to develop a personalized AI system, named Collaborative Radiology Expert 
(CoRaX). It integrates eye gaze data and radiology reports to improve diagnostic accuracy of 
radiologists in chest radiograph (CXR) interpretation by identifying and correcting perceptual 
errors. Incorporation of eye gaze data, which reflects the unique patterns of how a radiologist 



	
 

	

views and analyzes CXRs, into the AI model allows for the development of a personalized 
system that provides highly individualized referrals. 

Materials and Methods 
The retrospective study was approved by the Institutional Review Board (approval number for 
this study is STUDY00003659). conducted in accordance with the ethical standards of the 
responsible committee on human experimentation and with the Helsinki Declaration of 1975, as 
revised in 2000. 

Datasets 
This study utilized the public datasets EGD-CXR (27) and REFLACX (28). The EGD-CXR 
dataset comprises 1,071 CXRs reviewed by radiologists using an eye-tracking system. The 
REFLACX dataset encompasses 2440 cases with synchronized eye-tracking and speech 
transcription pairs, annotated by radiologists. We generated fixation heatmaps overlaid on the 
CXRs by leveraging eye gaze data to provide a dynamic representation of the gaze movements 
over the CXR images. The two datasets belong to two different radiologists, and we combined 
them and created a training set and a test set to train the STARE module. The speech 
transcription data obtained from EGD-CXR and REFLACX contain detailed radiology reports 
with word alignments for CXR images. By merging the transcriptions from REFLCAX and 
EGD-CXR, we generated a final JSON file after preprocessing that includes comprehensive 
reports and associated timesteps. This compilation is crucial for training the STARE module. 

System Overview 
This study specifically addresses visual misses caused by recognition and decision issues, 
categorizing them as perceptual errors when radiologists fail to mention or recognize 
abnormalities (29). One conventional approach to reducing perceptual errors is the Double 
Reading system, where a second reader reviews the study (14). Our system functions as a virtual 
second reader or postinterpretation tool to mitigate perceptual errors. CoRaX operates as a 
postinterpretation system, where radiologists submit radiographic images, reports, and eye gaze 
data (Fig 1). CoRaX then generates referrals for further assessment by radiologists, forming a 
collaborative framework between them and the system, with eye gaze data aiding in 
understanding radiologists’ cognitive processes. CoRaX comprises two crucial modules: 1) 
Missed Abnormality Finder (MAF) and 2) Spatio-Temporal Abnormal Region Extractor 
(STARE) (Fig 2). Additionally, it involves specific set operations to identify perceptual errors. 
Its primary focus is not to generate full radiology reports but rather to identify key findings or 
abnormalities mentioned in the Chexpert dataset (30) overlooked by the radiologist. 

The MAF module is tasked with summarizing the radiology report and identifying any 
missing abnormalities. If the radiologist fails to diagnose an abnormality in the CXR image, this 
module appends the missing abnormality to the summarized radiology report. MAF is created by 
combining the functionalities of the Chexpert Labeler (30) and ChexFormer. 



	
 

	

Chexpert-Labeler (30) is a rule-based natural language processing (NLP) tool used to 
automatically annotate radiology reports for CXRs with a set of predefined labels. Developed as 
part of the Chexpert dataset (30), it identifies the presence, absence, or uncertainty of specific 
medical conditions (such as pneumonia, atelectasis, and cardiomegaly) by parsing and analyzing 
the textual content of the reports. We have used the Chexpert-Labeler (30) to summarize the 
radiology report into the Chexpert labels. 

ChexFormer serves as the fundamental engine of our proposed system—a multilabel 
transformer classifier designed to predict multiple labels corresponding to a given chest X-ray 
(CXR) image (31). Pretrained on the Chexpert dataset (30), ChexFormer demonstrates 
proficiency in multilabel classification tasks. Refer to the detailed architectural description of the 
ChexFormer and MAF module in the supplementary section. 

The STARE module is a pivotal component of our system. It predicts the temporal grounding 
(ie, timestamp) for each abnormality in the corrected and summarized radiology report. Inspired 
by a dense video captioning task in computer vision (32,33). STARE takes the MAF module’s 
output (ie, a corrected and summarized radiology report) and the eye gaze video to predict 
timestamps for each abnormality in the report, as depicted in Figure 2. The detailed overview of 
the STARE module is presented in the supplementary file. 

The final referral generation process addresses visual misses by comparing label sets. Set A 
represents the original report, while Set B corresponds to the corrected prediction. A set 
difference operation is applied to identify discrepancies between the two sets (Fig 2). A detailed 
explanation of the set difference and referral generation logic can be found in the supplementary 
material. We provide the link to the source code and dataset in this link: 
https://github.com/a04101999/CoRaX-Collaborative-radiology-xpert- 

Training and Testing 

To manage computational costs while leveraging public datasets, we trained each module 
independently. ChexFormer was trained on approximately 4,000 chest X-rays and tested on 
1,000 images from the CheXpert dataset (30). During training, it received both label embeddings 
and image features; during inference, only image features were used to predict labels. CheXpert 
includes 14 labels with values 0 (absent), 1 (present), and-1 (uncertain). We treated uncertain 
(−1) labels as positive (1), aligning with our goal to flag potentially missed abnormalities. 

The STARE module is trained on a merged dataset comprising the REFLACX and EGD-CXR 
datasets, resulting in a total of 3511 samples. Among these samples, 2,969 are designated for 
training, 271 for validation, and 271 for testing. Inputs included fixation heatmap videos and 
temporally grounded abnormality sequences derived from summarized reports. The model was 
trained for 300 epochs using the Adam optimizer with a batch size of 2 on 8 Tesla GPUs. 
Detailed standalone performance of the STARE and ChexFormer modules is included in the 
supplementary section. 

 



	
 

	

Error Dataset 
The principal aim of our system was to identify and rectify perceptual errors. Since real-time 
datasets with perceptual errors are unavailable, we created error datasets by simulating errors 
from the test set. CoRaX was evaluated on these datasets to assess its effectiveness in identifying 
and rectifying perceptual errors. The summarized radiology report for images in the test set (n = 
271) was altered deliberately to introduce diagnostic errors across different abnormalities in 
different regions of radiographs. Our system is specifically designed to correct errors for five 
abnormalities (Table 1): cardiomegaly, pleural effusion, atelectasis, lung opacity, and edema. 
Importantly, all errors evaluated and created in this study are limited to these five abnormalities. 
Error dataset is created in two ways: 1) Based on the random masking of the abnormalities, 2) 
Masking based on the Uncertain abnormalities 

Random Masking of Abnormalities 
Approximately 28.0% (93/332) of cases in the test set were randomly adjusted or masked to 
simulate errors. This approach involved making alterations without specific criteria to ensure that 
the system could assist both inexperienced radiologists, such as trainees, and experienced 
professionals. We assume that random masking is a valuable approach for simulating perceptual 
errors due to its broad coverage and generalization. By introducing errors in an unsystematic 
fashion, this technique allows for a comprehensive evaluation of the system’s performance 
across a diverse array of abnormalities and scenarios. However, it may not accurately represent 
real-world perceptual errors. To address this limitation, we developed an additional dataset as 
described below. 

Masking Based on Uncertain Abnormalities 
Another error dataset was created by altering abnormalities based on uncertainty labels (−1). 
This approach was applied to the same test set used for random masking. For abnormalities with 
uncertain labels (eg, Cardiomegaly, Pleural Effusion, Atelectasis, Lung Opacity, Edema), we 
introduced simulated errors to better represent real-world scenarios where radiologists might 
overlook or misinterpret abnormalities due to complexity. This method aims to reflect the 
challenges faced in clinical practice. Table 1 shows the percentage of abnormalities introduced 
into the dataset. Approximately 44.0% (146/332) of the cases were adjusted to simulate errors 
based on uncertain labels. For instance, Cardiomegaly was missed in only 6.1% (4/65) of cases 
in the uncertain masking scenario, illustrating that it is generally easier to diagnose and less 
prone to confusion. 

When we refer to "altered" cases, we mean that specific abnormalities were either masked or 
negated, representing perceptual errors from recognition or decision-making. The comparison 
between random masking and uncertain masking is crucial for understanding how different types 
of simulated errors impact system performance. Random masking provides a baseline to evaluate 
overall error correction capability, while uncertain masking offers insights into how the system 
handles errors linked to diagnostic uncertainty. As detailed in Table 1, various abnormalities in 
the test data were modified at different percentages to simulate these errors. 



	
 

	

Referral Evaluation Metrics 
We evaluated CoRaX’s referral accuracy using metrics that quantify its ability to identify and 
correct perceptual errors while minimizing false alarms. These include True Referral (TR), False 
Referral (FR), False Deferral (FD), and True Deferral (TD), which together characterize referral 
acceptance and rejection patterns. From these, we derive the Perceptual Error Correction Rate 
(PECR) and the Overdiagnosis Error Rate (ODER) to assess correction sensitivity and over-
referral tendency, respectively. To evaluate the spatial precision of referrals, we compute 
Interpretable Referral Accuracy (IRA), which combines referral acceptance with the overlap of 
predicted regions and ground truth using the Intersection over Union (IoU) (34). Finally, we 
introduce an Interaction Score to assess the quality of system–radiologist interactions, 
distinguishing between referral-based and deferral-based cases. An interaction is considered fully 
effective when both diagnostic and spatial correctness are achieved. A detailed description of 
these metrics is provided in the supplementary material. 

Statistical Analysis 
All analyses are performed using Python version 3.8. PECR and ODER metrics are calculated to 
evaluate the accuracy of Referrals and Deferrals. The 95% confidence intervals (CIs) for the 
PECR and ODER were also calculated using the bootstrap method with 1000 bootstrap samples. 
In cases where a metric achieved a perfect score (eg, 100%), the Wilson score interval was used 
instead, with a significance level of α = 0.05, yielding 95% CIs. Interpretable Referral Accuracy 
(IRA) metric based on the Jaccard Index, also called IoU score, is used to assess the system’s 
ability to predict the region of interest for each missed abnormality. To provide robust variability 
estimates, 95% confidence intervals (CIs) for the Interpretable Referral Accuracy were 
calculated using the bootstrap method with 1000 bootstrap samples. Separate 95% CIs were also 
calculated for each abnormality-specific true referral using the same bootstrap approach. 
Additionally, we have plotted the histograms to analyze the distribution of the Interaction Score, 
assessing both referral and non-referral interactions to provide a comprehensive view of the 
system’s performance across various interactions. The 95% confidence intervals (CIs) for the 
Interaction Score were also calculated using the bootstrap method with 1000 bootstrap samples. 
Details on the calculation of confidence Intervals (CIs) using the bootstrap method are provided 
in the supplementary file. No statistical significance tests were conducted in this study. 

Results 
Illustration of Referrals 
CoRaX demonstrated the ability to identify clinically relevant missed findings and generate 
appropriate referrals. It successfully detected multiple abnormalities overlooked in original 
radiology reports, including bilateral findings such as pleural effusion and pulmonary edema, 
which carry significant clinical implications if left unrecognized. Additionally, the system 
addressed uncertainty-related reporting errors by referring cases in which uncertain findings 
were omitted in erroneous reports (Fig 3). 



	
 

	

Referral Evaluation 
The Random Masking-based error dataset contains approximately 271 samples, with 93 
abnormalities missed across various regions in the radiographs. It is important to note that the 93 
missed abnormalities represent the number of abnormal conditions missed (TR + FD) rather than 
the number of individual cases, as a single case can contain multiple abnormalities. For this 
dataset, CoRaX achieved an overall PECR of 76.3% (71/93) [95% CI: 45.4%, 100.0%] and an 
overall ODER of 4.6% (9/195) [95% CI: 2.0%, 7.6%]. Table 2 shows the abnormality-specific 
PECR and ODER. 

The Uncertainty Masking-based error dataset also contains around 271 samples, with 146 
abnormalities missed. For this dataset, CoRaX achieved an overall PECR of 78.7% (115/146) 
[95% CI: 59.2%, 100.0%] and an overall ODER of 6.4% (10/155) [95% CI: 3.6%, 11.2%]. 
Abnormality-specific PECR and ODER are provided in Table 3. 

Overall, CoRaX demonstrates a higher PECR and lower ODER for Cardiomegaly compared 
with other lung diseases in both datasets, indicating that Cardiomegaly is more easily detectable 
than other conditions. This is because cardiomegaly has a defined region near the heart, but other 
lung diseases can occur in any area in the lungs. 

Evaluation of Referrals Based on the Region of Interest 
The overall IRA for all true referrals showed a mean score of 63.0% [95% CI: 59.0%, 68.0%] in 
the Random Masking-Based Error Dataset (Fig 4(1A)) and 58.0% [95% CI: 55.0%, 62.0%] in 
the Uncertainty Masking-Based Error Dataset (Fig 4(2A)). For abnormality-specific 
performance, Cardiomegaly consistently demonstrated the highest IRA, with a mean of 83.0% 
[95% CI: 74.0%, 90.0%] in the Random Masking-Based Error Dataset and 84.0% [95% CI: 
69.0%, 100.0%] in the Uncertainty Masking-Based Error Dataset (Figs 4(1B) and 4(2B)). 
Detailed mean IRA scores for other abnormalities are provided in the supplementary material. 
For overall performance, histogram plots of IRA scores show that 81.2% (65/80) of referrals in 
the Random Masking-Based Error Dataset had an IRA greater than 0, with 18.7% (15/80) 
scoring 0, while 73.6% (92/125) of referrals in the Uncertainty Masking-Based Error Dataset 
demonstrated non-zero scores, with 26.4% (33/125) scoring 0 (Figs 4(1C) and 4(2C)). 

Evaluation of Overall Interaction and Diagnostic Accuracy 
In the Random Masking-Based Error Dataset (Table 4), approximately 71.4% (200/280) of the 
interactions resulted in no referrals, with around 63.5% (178/280) of these decisions being 
accurate, and 7.8% (22/280) of missed correcting radiologist’s perceptual errors. Regarding 
referral-based interactions, 28.5% (80/280) of interactions are referral based, with around 25.3% 
(71/280) were correct and 3.2% (9/280) are incorrect, leading to direct rejection by radiologists. 
The system achieved a non-zero Interaction score, indicating its ability to provide diagnostic aid 
to radiologists, in 85.7% (240/280) of interactions. The mean Interaction score for the Random 
masking-based error dataset is 0.78[95% CI: 0.74, 0.83] (Fig 5(A)). 



	
 

	

In the Uncertainty Masking-Based Error Dataset (Table 5), approximately 58.2% (173/297) of 
interactions resulted in no referrals, with about 47.8% (142/297) being accurate and 10.4% 
(31/297) missing perceptual errors. For referral-based interactions, 42.0% (125/297) involved 
referrals, with 38.7% (115/297) correct and 3.3% (10/297) incorrect, leading to rejections by 
radiologists. The system achieved a non-zero Interaction score, indicating its ability to provide 
diagnostic aid to radiologists, in 78.4% (233/297) of interactions. The mean Interaction score for 
the Uncertainty masking–based error dataset is 0.66[95% CI: 0.61, 0.70] (Fig 5(B)). 

Discussion 
This study introduces CoRaX, a collaborative AI system designed to address perceptual errors in 
chest radiograph interpretation by integrating gaze data and radiologist interaction patterns. 
CoRaX was evaluated using two simulated error datasets—random masking-based and 
uncertainty masking-based—to reflect common perceptual oversights. The system corrected 
21.3% (71/332) of errors in the random masking dataset and 34.6% (115/332) in the uncertainty 
masking dataset, with particularly strong performance in identifying missed Cardiomegaly cases. 
It achieved mean IRA scores of 63.0% [95% CI: 59.0, 68.0%] and 58.0% [95% CI: 55.0, 62.0%, 
and provided diagnostic aid in 85.7% (240/280) and 78.4% (233/297) of interactions, 
respectively, as measured by the Interaction Score. 

Prior research in radiology AI has largely centered on fully automated systems for abnormality 
detection (30) or report generation (36), rather than targeting perceptual error correction. While 
these systems offer valuable diagnostic support, their autonomous nature may contribute to over-
reliance or skepticism among clinicians, particularly when lacking interpretability (9). CoRaX 
differs fundamentally by functioning as a collaborative assistant: it supports radiologists by 
identifying potential perceptual oversights and offering interpretable, gaze-informed feedback. 
Metrics such as Interpretable Referral Accuracy quantify the system’s ability to redirect attention 
effectively, while the Interaction Score captures its broader diagnostic utility. This framework 
emphasizes human-AI synergy over substitution, fostering more actionable and trustworthy 
clinical support. 

This study has several limitations. First, perceptual errors were synthetically introduced into 
the datasets. Although these were designed to resemble real-world oversights through manual 
curation of erroneous samples, they do not fully capture the diversity of perceptual errors present 
in clinical radiology (29,35). Second, minor misalignments between gaze data and transcription 
timestamps led to slight inaccuracies in the regions predicted by the STARE module. 
Furthermore, the current study focuses primarily on technical system development; direct real-
world validation with radiologists remains a future goal. Nonetheless, CoRaX shows promise for 
educational use, particularly in training less experienced radiologists. Its modular design 
facilitates ongoing research and adaptation, supporting future refinement and personalization. 

In conclusion, CoRaX is a novel AI system that addresses perceptual errors in radiology 
through multimodal analysis of gaze and interaction data. By developing and evaluating two 
simulated error datasets, we demonstrated its capacity to correct missed findings and enhance 
diagnostic performance. While the current work emphasizes system development, the modular 



	
 

	

architecture enables future enhancements, such as replacing the multilabel classifier (eg, 
ChexFormer) with more advanced models. This approach lays the groundwork for robust, error-
resistant AI systems and paves the way for future clinical trials and broader adoption. 
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Figure 1: An overview of our innovative collaborative system, CoRaX. Our system seamlessly 
integrates radiology reports, eye gaze data, and chest radiographs (CXR) to offer targeted 



	
 

	

recommendations. Then the radiologist uses these recommendations and either accepts them or 
rejects them. CXR = Chest X-ray. 

 
Figure 2: Overview of CoRaX architecture, consisting of two main modules. The MAF 
module is dedicated to identifying abnormalities that may have been missed, while the STARE 
module focuses on precisely locating the corresponding regions of interest within the diagnostic 
process. MAF = Missing Abnormality Finder; STARE: Spatio-Temporal Abnormal Region 
Extractor. 



	
 

	
 



	
 

	

Figure 3: Examples of referrals generated by the system across different cases. (A) Referrals 
based on the random masking error dataset. (B) Referrals based on the uncertainty masking error 
dataset. Each subfigure is organized into three columns: the first column shows the actual CXR 
image, the second column presents the incorrect radiology report derived from simulated error 
data alongside its correct counterpart, and the third column displays the referrals generated by 
our system. Referrals are marked with a check mark if accepted by the radiologist or a cross 
mark if rejected. These acceptance and rejection marks are based on the original radiology 
reports rather than an independent review of the images by the radiologists. CXR = Chest X-ray. 

 
Figure 4: Comprehensive evaluation of CoRaX’s referral-based interaction on two error 
datasets. Figure 4(1) presents results on the Random Masking-Based Error Dataset, while Figure 
4(2) shows results on the Uncertainty Masking-Based Error Dataset. Each subfigure comprises 
three subplots (A, B, C). Plot A illustrates the distribution of Interpretable Referral Accuracy 
scores for all True Referrals (TR). Plot B displays the distribution of Interpretable Referral 
Accuracy scores for True Referrals (TR) corresponding to each abnormality. Plot C depicts the 
overall Interpretable Referral Accuracy of referrals (TR+FR) in the Referral-based Interaction. 



	
 

	

 
Figure 5: Histogram of Interaction score, reflecting the system’s comprehensive performance 
considering the collaboration between the radiologist and CoRaX. Figure 5(A) illustrates the 
system’s performance using the random masking-based error dataset, while Figure 5(B) displays 
results from the uncertainty masking-based error dataset. distribution function of the Interaction 
score, reflecting the system’s comprehensive performance considering the collaboration between 
the radiologist and CoRaX. 

Table 1: Overview of the Error Introduction Methods Used in the Test Set to Evaluate 
CoRaX’s Performance 

Abnormality Error Based On Uncertainty 

 

Percentage (Error Cases/ 
Total Cases) % 

 

Error Based On Random 
Masking  

 

Percentage (Error Cases/ 
Total Cases) % 

Cardiomegaly 6.1(4/65) 15.3(10/65) 

Pleural Effusion 44.6(29/65) 23.0(15/65) 

Atelectasis 70.3 (38/54) 42.0 (23/54) 

Lung Opacity 44.6(42/94) 27.6(26/94) 

Edema 61.1(33/54) 35.1(19/54) 



	
 

	

Note.—The dataset comprises 271 chest radiographs (CXR) with errors deliberately introduced 
to simulate real-world diagnostic challenges. Errors were introduced in two ways: (1) Random 
Masking of Abnormalities, where cases were altered without specific criteria to simulate general 
perceptual errors, and (2) Masking Based on Uncertain Abnormalities, where cases were 
adjusted according to uncertainty labels to reflect real-world diagnostic difficulties. The table 
presents the percentage of error cases for various abnormalities under these methods. 

Table 2: Detailed Analysis of CoRaX’s Performance in Identifying Visual Misses for 
Different Abnormality types in the Random Masking-Based Error Dataset 

Abnormality True 
Referrals 
(TR) 

False 
Deferral 
(FD) 

Perceptual 
Error 
Correction 
Rate  

(PECR)(%) 

False 
Refer
ral 

(FR)  

True 
Deferral 

(TD) 

Over-
diagnosis 
Error Rate 

(ODER) 

(%) 

Cardiomegaly 10 0 100.0(10/10) 

[72.2,100.0] 

2 261 0.7(2/263) 

[0,1.9] 

Edema 14 5 73.6(14/19) 

[50.0,93.9] 

2 252 0.8(2/254) 

[0,1.9] 

Atelectasis 14 9 60.8(14/23) 

[39.4,80.0] 

2 248 0.8(2/250) 

[0.0,1.9] 

Pleural 
Effusion 

10 5 66.6(10/15) 

[44.1,90.2] 

2 256 0.8(2/258)[
0,1.9] 

Lung Opacity 23 3 88.4(23/26) 

[74.1,100.0] 

1 245 0.4(1/246)[
0.0,1.5] 

The table includes metrics for Perceptual Error Correction Rate (PECR) and Over-diagnosis 
Error Rate (ODER). 

 

 

 



	
 

	

Table 3: Detailed Analysis of CoRaX’s Performance in Identifying Visual Misses for 
Different Abnormality types in the Uncertainty Masking-Based Error Dataset 

Abnormality True 
Referrals 
(TR) 

False 
Deferral 
(FD) 

Perceptual 
Error 
Correction 
Rate  

(PECR)(%) 

False 
Referral 

(FR)  

True 
Deferral 

(TD) 

Over-
diagnosis 
Error Rate 

(ODER) 

(%) 

Cardiomegaly 4 0 100.0(4/4) 

[51.0,100.0] 

3 267 1.1(3/270) 

[0.3,3.7] 

Edema 26 7 78.7(26/33) 

[75.7,100.0] 

0 238 0.0(0/238) 

[0.0,2.0] 

Atelectasis 28 10 73.6(28/38) 

[56.4,83.7] 

2 233 0.8(2/235) 

[0.0,2.0] 

Pleural 
Effusion 

17 12 58.6(17/29) 

[55.5,89.2] 

4 242 1.6(4/246) 

[0.0,2.0] 

Lung Opacity 40 2 95.2(40/42) 

[85.2,100.0] 

1 229 0.4(1/230) 

[0.0,1.7] 

The table includes metrics for Perceptual Error Correction Rate (PECR) and Over-diagnosis 
Error Rate (ODER) 

Table 4: System Performance on the Random Masking-Based Error Dataset, Showing the 
Frequency of Referral and Deferral Decisions Along with the Correctness of Each Decision 
Type 

Interaction Correct (%) Incorrect (%) 

Deferral-based 63.5(178/280) 7.8(22/280)  

Referral-based 25.3(71/280) 3.2(9/280) 



	
 

	

Table 5: System Performance on the Uncertainty Masking-Based Error Dataset, Showing 
the Frequency of Referral and Deferral Decisions Along with the Correctness of Each 
Decision Type 
Interaction Correct (%) Incorrect (%) 

Deferral-based 47.8(142/297) 10.4(31/297) 

Referral-based 38.7(115/297) 3.3(10/297) 

 

 

Supplementary	material:	

	

Detailed	Methodology:	
	

Missed	Abnormality	Finder:	This	module	plays	a	pivotal	role	in	summarizing	and	
supplementing	any	overlooked	abnormalities	identi7ied	in	the	actual	radiology	report.	In	
the	initial	phase	of	our	system,	MAF	combines	the	CXR	image	and	the	actual	radiology	
report	to	generate	a	summarized	report	with	appended	missing	identi7ied	abnormalities.	
Serving	as	the	primary	engine	in	our	proposed	system,	MAF	is	created	by	combining	the	
functionalities	of	the	Chexpert	Labeler	and	Chexformer.		
	
The	Chexformer,	functioning	as	a	multilabel	classi7ier	and	the	central	component	of	the	
proposed	system,	takes	the	CXR	image	as	input	and	produces	multiple	labels	corresponding	
to	the	image	(referred	to	as	set	A	in	supplementary	7igure	6).	Concurrently,	the	actual	
radiology	report	undergoes	processing	by	the	Chexpert	Labeler,	an	NLP	tool	designed	for	
radiology	report	summarization.	The	Chexpert-Labeler	extracts	observations	from	free-text	
radiology	reports	and	captures	uncertainties	present	in	the	reports	using	an	uncertainty	
label.	It	converts	the	detailed	radiology	report	into	14	pathologies,	de7ining	three	labels	for	
each	pathology	as	positive	(1),	negative	(0),	or	uncertain	(-1),	and	leaving	blank	for	
pathology	if	the	doctor	does	not	mention	it	in	the	report.	While	condensing	the	actual	
report	into	a	summarized	report,	we	consider	all	pathologies	in	the	summarized	report	
with	-1	and	1	values	because	0	indicates	that	the	radiologist	has	not	dismissed	the	



	
 

	

abnormality	or	has	determined	that	there	is	no	abnormality.	Throughout	the	manuscript,	
the	same	principle	is	applied	to	the	summarized	radiology	report.	The	labeler	condenses	
the	report	into	prede7ined	labels,	termed	set	B.	The	union	of	these	two	sets	results	in	the	
7inal	output	–	a	summarized	and	corrected	report.	

	

	
Supplementary	Figure	6:	Design	Blueprint	for	CoRaX's	MAF	Module,	Comprising	Two	
Key	Components	-	Chexformer,	a	Multilabel	ClassiFier,	and	the	Chexpert	Labeler.	
Chexformer	performs	multilabel	classiFication	on	the	provided	CXR	image,	while	
Chexpert	summarizes	the	actual	report.	The	Final	output	is	the	union	of	sets	A	and	B,	
representing	the	corrected	and	summarized	report.	MAF	=	Missing	Abnormality	
Finder	

	

Chexformer:	It	serves	as	the	fundamental	engine	of	our	proposed	system—a	multilabel	
transformer	classi7ier	designed	to	predict	multiple	labels	corresponding	to	a	given	CXR	
image.	This	classi7ier,	known	as	Chexformer,	operates	on	a	multi-label	classi7ication	
framework	employing	a	Transformer	encoder.	Pretrained	on	the	CheXpert	dataset,	
Chexformer	demonstrates	pro7iciency	in	multilabel	classi7ication	tasks.	

The	Transformer[1]	plays	a	pivotal	role	as	an	architecture	that	captures	essential	
relationships	within	input	data	using	multi-head	self-attention	layers.	Illustrated	in	



	
 

	

Supplementary	Figure	7,	Chexformer	employs	the	Transformer	encoder,	utilizing	label	
embeddings	and	image	features	extracted	by	a	convolutional	neural	network	during	
training	to	produce	target	labels.	It	learns	the	interaction	between	image	features	and	label	
embeddings,	modeling	the	joint	embedding	space	or	multimodal	interactions.	

In	multi-label	classi7ication,	the	primary	goal	is	to	predict	multiple	labels	denoted	as	
{"!, "", … , "#}  where	each	"$ 	takes	values	of	0	or	1,	given	the	chest	X-ray	image	represented	
by	x.	

Let	& = {(!, … , (%×' , )˜!, … , )˜#} 	represent	the	set	of	embeddings	input	to	the	Transformer	
encoder.	In	Transformers,	the	signi7icance	or	weight	of	an	embedding	ℎ( ∈ & concerning	
ℎ$ ∈ &	is	determined	through	"self-attention."	The	attention	weight,	denoted	as	-$()  	
between	embedding	. 	and	/,	is	computed	by	7irst	calculating	a	normalized	scalar	attention	
coef7icient	-$( .	After	computing	-$( 	for	all	pairs	of	. 	and	/,	each	ℎ$ 	is	updated	to	ℎ$* 	using	a	
weighted	sum	of	all	embeddings,	followed	by	a	nonlinear	ReLU	layer.	
	
	
	

!!" = "#$%&'(	*(,#ℎ!)$*,%ℎ"//√2/	  - (1) 

	 	 	 			ℎ! = ∑ 4!"&
"'(   ,)ℎ"                   	

	 	 ℎ!* = 6789	*ℎ!,+ + ;(/,, + ;-.      	
	
In	this	context,	0+ 	represents	the	key	weight	matrix,	0, 	is	the	query	weight	matrix,	0-	

stands	for	the	value	weight	matrix,	0. 	and	0/	denote	transformation	matrices,	and	1!	
and	1"	are	bias	vectors.	The	outlined	update	procedure	can	be	iterated	for	2	layers,	where	
the	updated	embeddings	ℎ$* 	serve	as	input	to	the	successive	Transformer	encoder	layer.	It's	
essential	to	note	that	the	learned	weight	matrices	{0+ ,0, ,0- ,0. ,0/} ∈ 30×0 	are	not	
shared	across	layers.	The	7inal	output	of	the	Transformer	encoder,	following	2	layers,	is	
denoted	as	&* = {(!* , … , (%×'* , )!* , … , )#*}.	



	
 

	

Image	Feature	Embeddings:	For	an	input	image	4 ∈  31×2×3 ,	the	feature	extractor	
generates	a	tensor	6 ∈  3%×'×0 ,	where	ℎ,7, and 8	denote	the	output	height,	width,	and	
channels,	respectively.	Each	vector	($ ∈ 30 	from	6,	where	.	varies	from	1 to 9  (where 9 =
ℎ × 7 ),	can	be	regarded	as	representing	a	subregion	that	corresponds	to	patches	in	the	
original	image	space.	
	
Label	Embeddings:	For each image, we obtain a collection of label embeddings, 
denoted as 2 = {)!, )", … , )#}, where each )$ ∈ 30 represents one of the possible labels 
in ". These label embeddings are acquired through learning from an embedding layer 
with dimensions 8 × ). 
 

Image	Feature	Extractor:	We	employed	ResNet-101[2]	as	a	feature	extractor,	pre-trained	
on	ImageNet[3].	The	ResNet-101	output	dimension	is	2048,	and	we	designated	our	
embedding	size,	denoted	as	d,	to	be	2048.	During	Chexformer	training,	we	resized	the	
images	to	640x640,	performed	random	cropping	to	576x576,	and	included	some	horizontal	
7lips	to	introduce	diversity	in	the	training	data.	Conversely,	testing	images	undergo	center	
cropping.	The	ResNet-101	model	generates	an	18×18×d	tensor	as	output,	resulting	in	a	
total	of	324	feature	embedding	vectors,	represented	as		($ ∈ 30 .	
	
	
	
Transformer	Encoder:	In	order	to	allow	a	particular	embedding	to	attend	to	multiple	
other	embeddings	(or	multiple	groups),	Chexformer	uses	4	attention	heads	[1].	We	use	a	2 
=3	layer	Transformer	with	a	residual	layer	[2]	around	each	embedding	update	and	layer	
norm	[4].		
	
	
Training:ChexFormer	undergoes	training	on	the	Chexpert	dataset,	employing	Adam	[5]	as	
the	optimizer	with	betas	set	to	(0.9,	0.999)	and	zero	weight	decay.	The	training	process	
utilizes	a	batch	size	of	16,	a	learning	rate	of	10^-5,	and	incorporates	dropout	[6]	with	a	
probability	of	p	=	0.1	for	regularization.	ChexFormer	is	trained	on	a	subset	of	approximately	



	
 

	

4000	images	from	the	Chexpert	dataset,	with	an	additional	1000	images	utilized	for	testing	
ChexFormer.	During	training,	ChexFormer	takes	label	embeddings	and	image	features	as	
input,	learning	to	predict	labels.	However,	during	the	inference	phase,	it	takes	image	
features	as	input	and	outputs	labels	for	the	CXR	image.		
 

As previously mentioned, ChexFormer undergoes training on the CheXpert dataset. The 
dataset encompasses 14 labels, with each label capable of assuming values of 0, 1, or -
1, representing no abnormality, confirmed abnormality, and uncertainty for the 
abnormality, respectively. In the training process of ChexFormer, instances of -1 are 
replaced with 1. This adjustment is made because our ultimate goal is to offer 
recommendations to radiologists regarding potentially overlooked abnormalities. 
	

				
			

	
	

	



	
 

	

Supplementary	Figure	7:	depicts	an	illustration	of	Chexformer,	a	pretrained	
multilabel	classiFier	on	the	CheXpert	dataset.	In	the	training	phase,	it	receives	the	
CXR	image	and	label	embedding	as	input,	producing	scores	for	each	label	while	
learning	the	interaction	between	labels	and	image	features.	

	

	
	
Supplementary	Figure	8:	STARE	module	overview:	A	sequence	to	sequence	model	
which	takes	video	features		and	summarized	radiology	report	with	appended	time	
tokens	as	input	and	outputs	the	abnormality sequence	with	temporal	grounding.	

	

Spatio-Temporal	Abnormal	Region	Extractor:	The	core	of	our	system	features	the	
Spatio-Temporal	Abnormal	Region	Extractor	(STARE)	module,	tasked	with	predicting	the	
temporal	alignment	of	each	abnormality outlined	in	the	condensed	radiology	report	and	
then	use	temporal	alignment	to	7ind	the	corresponding	region	of	interest	for	each	
abnormality.	The	architecture	of	this	module	is	delineated	in	Supplementary	Figure	8,	
consisting	of	two	essential	components:	the	Video	Backbone	and	the	Language	Backbone.	
Our	system	design	is	inspired	by	deep	video	captioning	in	computer	vision[7,8].	During	the	
inference	phase,	the	condensed	radiology	report	is	enriched	with	start	and	end	times.	For	



	
 

	

text	radiology	reports,	the	start	time	is	initialized	at	0	seconds,	while	the	end	time	
corresponds	to	the	video	duration.	In	speech	transcription	scenarios,	the	start	time	
signi7ies	the	commencement	of	the	radiologist's	report	depiction,	and	the	end	time	signals	
the	radiologist's	conclusion.	
	
STARE		processes	both	the	frames	of	the	radiologist's	eye	gaze	7ixation	video	4	 = 	 {4$} $4	!

6 	
and	the	time-token-appended	condensed	and	corrected	radiology	report	"	 = 	 {"(} (4	!

7 ,	
where	y	denotes	the	abnormality	or	label	from	the	CheXpert	dataset.	The	model's	output	is	
a	abnormality	sequence	(	 = 	 {(+} +4	!

8 ,	encapsulating	each	abnormality's	textual	
description	and	timestamps	indicating	the	temporal	abnormality	locations	in	the	video.	The	
term	"condensed	and	corrected	radiology	report"	refers	to	the	output	of	the	Missing	
Abnormality	Finder	module,	representing	the	union	of	the	CheXpert	labeler	output	and	the	
labels	predicted	by	CheXformer.	However,	during	training,	STARE	independently	undergoes	
training	on	the	REFLACX	and	EGD-CXR	datasets.	
	
Video	Backbone	
	
The	Video	Backbone	plays	a	pivotal	role	in	extracting	features	from	the	input	video.	It	
comprises	a	spatial	encoder	followed	by	a	temporal	encoder,	operating	on	a	sequence	of	';'	
frames.	Utilizing	a	pre-trained	CLIP	ViT-L/14[10,11]		as	the	spatial	encoder,	we	extract	
individual	frame	features,	considering	the	spatial	characteristics	of	each	frame	in	the	video.	
The	frame	of	each	video	resized	to	224x224	before	extracting	the	features.	The	input	set	
consists	of	videos	with	dimensions	';	 × 	ℎ	 × 7	 × <',	where	'ℎ',	'7',	and	'<'	represents	the	
height,	width,	and	number	of	channels	of	each	frame.	The	spatial	encoder	processes	each	
frame	independently,	and	we	maintain	the	spatial	backbone	as	frozen	to	minimize	
computational	costs	and	parameter	count	in	the	overall	model.	
	
The	spatial	encoder	generates	a	two-dimensional	array,	with	the	7irst	dimension	
representing	the	number	of	frames	and	the	second	representing	the	embedding	dimension.	
Although	each	video	may	have	a	varying	number	of	frames,	we	limit	our	consideration	to	
the	features	of	the	7irst	100	frames.	To	accommodate	videos	with	fewer	than	100	frames,	
we	pad	the	feature	extraction	output	from	Resnet	with	zeros.	



	
 

	

	
For	the	temporal	encoder,	we	employ	a	pre-trained	CLIP	ViT-L/14[10,11]	transformer	to	
produce	contextualized	embeddings,	contributing	to	the	comprehensive	feature	
representation	of	the	input	video.	
	
Language	Backbone	
	
Our	language	backbone[59]	is	built	on	the	T5[12]	,	employing	an	encoder-decoder	
architecture.	We	initialized	both	the	text	encoder	and	decoder	with	the	t5-base	model,	
which	underwent	pretraining	on	web	text	corpora	with	a	denoising	loss.	
	
Text	and	Time	tokenization	

	
We	utilize	the	SentencePiece	tokenizer[11]	with	a	vocabulary	size	of	=	 = 	32,128.	Our	
approach	involves	initial	text	tokenization,	and	to	augment	this	process,	we	incorporate	two	
extra	time	tokens,	bringing	the	total	to	V	+	2	tokens.	Throughout	the	training,	these	time	
tokens	represent	the	initiation	and	conclusion	times	when	the	radiologist	begins	and	
concludes	the	depiction	of	the	radiology	report	while	examining	the	CXR	image	on	the	
screen.	The	time	tokenization	process	adheres	to	the	equation	detailed	below.	
	

																											BB = C():×	;)= C						(1)	
In	equation	1,	"tt"	denotes	the	time	token,	"ts"	represents	the	timestep	(indicating	the	start	
or	end	time	step),	"N"	signi7ies	the	quantized	bin	with	a	speci7ied	value	of	100	(N=bins),	
and	"D"	corresponds	to	the	video	duration.	

																							
	

	

	



	
 

	

Text	Encoder	

	
It	accepts	a	report	sequence	as	input,	where	the	report	sequence	comprises	'r'	tokens	
denoted	as	'y'	belonging	to	the	set	"	 ∈ {1, . . . , =	 + 	F}. 	.	Here,	'v'	represents	the	vocabulary	
size	of	text,	'n'	is	the	size	of	time	tokens	(here	G = 2)	,	and	'r'	stands	for	the	total	number	of	
tokens	in	the	report	sequence.	The	text	encoder	includes	an	embedding	layer	responsible	
for	independently	embedding	each	token,	producing	a	semantic	embedding	of	size	'rxd'.	
Subsequently,	a	transformer	encoder	calculates	contextualized	embeddings	of	size	'rxd',	
with	'd'	representing	the	hidden	dimension.	
	
Text	Decoder	

	
Comprising	a	transformer	decoder	and	an	embedding	layer,	the	system	generates	an	
abnormality	sequence	with	associated	temporal	grounding,	referred	to	as	the	abnormality	
sequence.	Each	abnormality	k	is	characterized	by	a	text	segment,	a	start	time	and	an	end	
time.	We	7irst	construct	for	each	event	k	a	sequence	by	concatenating	its	start	time	token	
t(startk)	,	its	end	time	token	t(endk),	and	its	text	tokens	[(+!, . . . , (+#!].	Finally,	the	event	
sequence	is	obtained	by	prepending	and	appending	a	BOS	and	EOS	tokens	to	indicate	the	
start	and	the	end	of	the	sequence,	respectively,	i.e.	(	 =
	[JKL, B:)>.)	!	, B?@0	!	, (!" 	, . . . , (!#" 	, B:)>.)	"		, . . . , MKL].	

The	transformer	decoder,	functioning	causally,	employs	cross-attention	with	the	encoder	
output,	formed	by	concatenating	visual	and	encoder	transformer	embeddings	(x_t	and	y_t),	
along	with	all	tokens	generated	earlier.	Simultaneously,	it	performs	self-attention	across	the	
entire	set	of	previously	generated	tokens.	The	text	decoder	produces	the	event	sequence	z	
by	utilizing	an	embedding	decoder,	which	is	applied	on	top	of	the	transformer	text	decoder.	
This	decoder	predicts	the	probability	distribution	over	the	joint	vocabulary	of	text	and	time	
tokens,	enabling	the	model	to	anticipate	the	subsequent	token	in	the	report	sequence.	
	
	

	

	



	
 

	

Region	extraction		

	
The	process	involves	using	the	predicted	time	steps	(start	and	end	time)	for	the	missing	
abnormality to	extract	frames	within	this	interval.	The	mean	image	is	then	calculated	using	
all	these	extracted	frames,	providing	a	comprehensive	representation	of	the	overall	
intensity	in	the	critical	region.	Similarly,	frames	are	extracted	using	the	ground	truth	time	
steps	for	the	predicted	missing	abnormality,	and	the	mean	image	is	calculated	from	these	
frames,	consolidating	multiple	extracted	frames	into	a	single	image.	But	we	also	provide	an	
option	in	the	system	if	the	user	wants	to	have	a	more	detailed	look	then	the	user	can	also	
pool	all	the	7ixation	points	between	the	extracted	time	step	into	a	single	heatmap	called	
static	heatmap	without	taking	a	mean	image.	The	comparison	between	the	predicted	mean	
image	and	the	ground	truth	mean	image	is	then	performed	by	calculating	the	IoU.	
	
Fine	Tuning	

	

We	utilized	the	pretrained	model	from	vid2seq[7],	speci7ically	trained	on	the	ActivityNet	
Captions	dataset[13],	which	comprises	approximately	20,000	untrimmed	videos	depicting	
diverse	human	activities.	Each	video	is	accompanied	by	transcribed	speech	sentences	and	
timestamps,	establishing	a	temporal	connection	to	events.	Given	the	limited	availability	of	
7ixation	videos	and	corresponding	transcriptions	in	the	medical	domain,	leveraging	this	
pretrained	model	enables	our	system	to	understand	long-term	relationships	among	
different	speech	segments.	
	
During	the	7ine-tuning	stage,	the	model	undergoes	re7inement	to	predict	the	temporal	
grounding	of	each	abnormality	in	the	summarized	radiology	report	obtained	through	the	
CheXpert	labeler.	The	7ine-tuning	objective	is	rooted	in	the	maximum	likelihood	objective,	
as	further	detailed	in	this	context[7].	The	primary	goal	of	this	Spatio-Temporal	Abnormal	
Region	Extractor		(STARE)	module	is	to	understand	human	cognition	during	decision-
making	in	abnormality	diagnosis.	In	simpler	terms,	this	module	learns	what	radiologists	
focus	on	when	making	decisions	based	on	CXR	images.	
	
	



	
 

	

Set	Difference	operation	to	generate	the	referral:	To	identify	missing	abnormalities	
in	the	actual	radiology	report,	we	compare	it	with	the	output	of	the	Chexpert-Labeler	[14]	
module.	In	the	main	manuscript	Figure	2,		Set	A	represents	the	actual	summarized	
radiology	report,	and	Set	B	represents	the	output	of	the	STARE	module,	excluding	timesteps	
for	the	analysis	of	the	set	difference.	The	set	difference	reveals	missing	abnormalities	in	the	
radiology	report.	Set	B	has	a	cardinality	greater	than	or	equal	to	that	of	set	A,	aligning	with	
our	system's	focus	on	correcting	perceptual	errors	or	7inding	missing	diagnoses.		
	
The	set	difference	result	reveals	missing	abnormalities,	and	we	extract	the	corresponding	
timesteps	from	the	STARE	module	output.	Using	these	timestamps,	we	identify	7ixation	
points	between	them,	representing	frames	in	the	video.	If	this	time	interval	spans	multiple	
frames,	we	compute	the	mean	of	the	image	frames	and	merge	them	into	a	single	image,	
referred	to	as	the	region	of	interest	for	the	missing	abnormality.	But	we	also	provide	an	
option	in	the	system	if	the	user	wants	to	have	a	more	detailed	look,	then	the	user	can	also	
pool	all	the	7ixation	points	between	the	extracted	time	step	into	a	single	heatmap	called	a	
static	heatmap	without	taking	a	mean	image.	This	consolidated	image	and	the	missed	
abnormality	serve	as	the	referral	produced	by	our	system.	

	

	
Data	Preprocessing		
	
The	speech	transcription	data	obtained	from	EGD-CXR	and	REFLACX	contains	detailed	
radiology	reports	with	word	alignments	for	CXR	images.	By	merging	the	transcriptions	
from	REFLCAX	and	EGD-CXR,	we	generated	a	7inal	JSON	7ile	that	includes	comprehensive	
reports	and	associated	timesteps.	This	compilation	is	crucial	for	training	the	temporal	
grounding	predictor	module.	
	
In	our	preprocessing	phase,	we	summarize	the	real	radiology	reports	to	acquire	both	the	
ground	truth	and	input	report	necessary	for	training	the	Spatio-Temporal	Abnormal	Region	
Extractor		(STARE)	module.	When	condensing	the	radiology	reports,	we	prioritize	essential	
abnormalities outlined	in	the	CheXpert	labeler.	Our	approach	to	preprocessing	aims	to	



	
 

	

avoid	converting	the	entire	radiology	report	into	isolated	labels,	instead	focusing	on	
ensuring	that	the	model	grasps	the	fundamental	aspects	of	chest	X-ray	anatomy,	including	
spatial	relations	like	"right"	and	"left"	lungs.	Radiology	reports	typically	comprise	multiple	
sentences	separated	by	periods.	To	address	this	structure,	our	preprocessing	methodology	
involves	extracting	each	sentence.	During	this	extraction	process,	we	meticulously	
scrutinize	each	sentence	for	phrases	corresponding	to	abnormalities in	the	CheXpert	
labeler.	If	a	match	is	found,	we	substitute	the	sentence	with	the	relevant	abnormality;	
otherwise,	it	remains	unchanged.	
	
The	extraction	of	timesteps	for	each	abnormality	or	unchanged	sentence	relied	on	the	
speech	transcription	associated	with	each	radiology	report.	This	resulting	7ile	served	as	the	
ground	truth	during	the	model	7ine-tuning,	encompassing	7ixation	heatmap	videos	and	
summarized	radiology	reports	featuring	only	start	and	end	timestamps	for	the	entire	
report	as	input.	This	ensured	a	robust	foundation	for	training.	The	core	objective	of	the	
Spatio-Temporal	Abnormal	Region	Extractor		(STARE)	module	is	to	comprehend	human	
cognition	by	predicting	the	timestamps	associated	with	each	intention.	It's	worth	noting	
that	our	focus	does	not	extend	to	conducting	dense	video	captioning	in	this	context.	
	
	

Random-Masking-Based	Error	Dataset:	
	
Inexperienced	radiologists	are	more	prone	to	missing	cases	due	to	their	limited	knowledge,	
whereas	experienced	radiologists	typically	have	a	lower	rate	of	missed	cases.	However,	
experienced	radiologists	may	still	miss	cases	if	their	7ixation	time	is	shorter	or	if	they	do	
not	pay	suf7icient	attention	to	abnormal	regions	while	diagnosing	speci7ic	abnormalities.	
Limited	focus	or	attention	may	be	a	primary	reason	for	visual	misses	among	experienced	
radiologists,	but	other	factors	such	as	fatigue	or	poor	lighting	could	also	contribute.	
	
To	cover	all	potential	scenarios,	we	chose	to	randomly	alter	abnormalities	in	the	test	set.	
These	alterations,	considered	anomalies,	are	intentionally	kept	at	a	low	percentage	in	the	
dataset.	The	primary	aim	of	this	study	is	to	identify	perceptual	errors	and	rectify	them.	
When	we	mention	"altered,"	it	means	that	if	a	speci7ic	case	originally	includes	a	particular	



	
 

	

abnormality,	we	either	mask	it	or	alter	it	with	negation.	Both	scenarios	fall	under	the	
category	of	perceptual	errors	resulting	from	recognition	or	decision-making.	Consequently,	
speci7ic	abnormalities	listed	in	Table	1	have	been	randomly	modi7ied	in	the	test	data	at	
varying	percentages,	as	indicated	below.	
	
Since	the	proposed	system	takes	the	summarized	report	as	input,	whether	we	mask	the	
abnormality	or	alter	it	with	negation	does	not	affect	the	outcome.	In	both	cases,	the	
abnormality will	not	be	included	in	the	summarized	report.	
	

Referral	Evaluation	Metrics:	
To	evaluate	the	accuracy	of	referrals	in	identifying	missed	abnormalities,	we	assessed	how	
many	times	such	abnormalities	are	correctly	identi7ied	and	corrected.	This	assessment	
includes	calculating	True	Referral	(TR),	False	Referral	(FR),	False	Deferral	(FD),	and	True	
Deferral	(TD)	for	each	abnormality.	

True	Referral	(TR)	refers	to	the	number	of	abnormalities	that	were	missed	by	radiologists	
but	correctly	identi7ied	by	CoRaX.	It	also	represents	the	number	of	referrals	accepted	by	
radiologists.	
False	Referral	(FR)	refers	to	the	number	of	abnormalities	that	CoRaX	incorrectly	over-
diagnoses	(7lags	as	abnormal	when	they	are	not).	It	also	represents	the	number	of	referrals	
rejected	by	radiologists.	
	
False	Deferral	(FD)	refers	to	the	number	of	abnormalities	that	were	missed	by	
radiologists,	and	the	system	also	fails	to	identify	these	abnormalities.	In	this	case,	both	the	
radiologist	and	the	system	overlook	the	abnormality,	leading	to	the	incorrect	decision	of	
not	making	a	referral.	
	
True	Deferral	(	TD)	refers	to	the	number	of	abnormalities	for	which	the	system	correctly	
decides	not	to	make	a	referral.	This	occurs	when	the	abnormality	is	identi7ied	as	non-
critical	or	has	already	been	addressed	by	the	radiologist.	
		



	
 

	

	
Using	TR,	FR,	FD,	and	TD,	we	subsequently	compute	the	Perceptual	Error	Correction	Rate	
(PECR)	and	Overdiagnosis	Error	Rate	(ODER),	providing	a	singular	metric	for	
understanding	the	model's	performance	in	identifying	errors.	
	
	Perceptual	Error	Correction		Rate		(PECR):	The	metric	measures	the	system's	
effectiveness	in	rectifying	perceptual	errors	for	each	abnormality,	with	individual	PECR	
values	outlined	in	Table	1.	This	metric,	resembling	the	system's	recall,	is	de7ined	as	follows:	
	

9MN3(%) 	= 	 (AB)
ABC6=		 (3)	

	
		
	
Over-diagnosis	Error		Rate	(ODER):	This	metric	measures	how	frequently	the	model	
over-diagnoses	abnormalities,	indicating	the	proposed	system's	error	rate.	It	resembles	the	
system’s	FPR(	False	positive	Rate):	
	

KRM3(%) 	= 	 (6B)
6BCA=		(4)	

	

	

	

Evaluation	of	Referrals	based	on	the	region	of	interest:	The	system's	ability	to	
identify	missing	abnormalities	and	highlight	their	regions	of	interest	is	assessed	by	
measuring	the	overlap	between	the	true	and	predicted	regions,	utilizing	the	Intersection	
over	Union	(IoU)	metric.	
	



	
 

	

Higher	IoU	scores	indicate	better	accuracy	of	the	highlighted	region	of	interest,	indicating	
reduced	confusion	for	radiologists	and	offering	insights	into	potentially	saving	clinical	time.	
By	effectively	directing	radiologists	to	the	correct	regions	of	interest	for	missed	
abnormalities,	the	system	minimizes	the	need	for	them	to	initiate	their	search	anew.	
	
SGBTUVUTBW1)T	3T;TUUW)	X<<YUW<"	(S3X)(%) 	= S(3T;TUUW)	.Z	X<<TVBT8) ∗ S\] ∗ 100		(5)	
	
Where	S	is	an	indicator	function	whose	value	is	1	if	the	referral	is	accepted.		
	

Evaluation	of	overall	interaction	and	diagnostic	accuracy:	We	introduce	the	
Interaction	score	metric,	which	serves	as	an	indicator	of	the	diagnostic	accuracy	of	each	
interaction	between	the	system	and	the	radiologist.	An	Interaction	score	of	1	indicates	a	
fully	bene7icial	interaction,	representing	diagnostic	aid	with	no	confusion.	The	Interaction	
score	is	calculated	based	on	the	case	level.		
	
Interactions	between	the	system	and	the	radiologist	can	be	classi7ied	into	two	categories:	
referral-based	and	non-referral-based.	We	consider	the	interaction	as	non-referral	or	
Deferral	if	there	is	not	any	referral	for	a	particular	case.	For	non-referral	interactions,	a	
score	of	1	is	assigned	when	the	system	refrains	from	making	any	referral	for	a	particular	
case	and	its	decision	aligns	with	the	correct	diagnosis,	ensuring	no	perceptual	errors	are	
overlooked.	Conversely,	a	score	of	0	is	assigned	when	the	system	makes	an	incorrect	
deferral,	indicating	0%	diagnostic	accuracy	and	no	assistance	to	the	radiologist.	Referral-
based	interactions	occur	when	the	system	makes	one	or	more	referrals	for	a	particular	
case.	Each	referral	for	a	case	is	counted	as	a	separate	referral-based	interaction.	For	
example,	if	a	case	involves	three	referrals,	it	contributes	three	referral-based	interactions.	
This	ensures	that	the	total	number	of	interactions	accounts	for	all	system-generated	
referrals,	which	may	exceed	the	number	of	cases.	In	referral-based	interactions,	an	
Interaction	score	of	1	represents	both	100%	diagnostic	accuracy	and	100%	spatial	
precision	in	identifying	abnormal	regions.	We	utilize	the	IoU	score	to	quantify	the	spatial	
precision	of	the	referrals.	
	



	
 

	

Bootstrap	for	CI	Calculation:	The	bootstrap	method	was	used	to	calculate	the	95%	
con7idence	intervals	(CIs)	for	the	PECR,	ODER,		Interpretable	Referral	Accuracy,	and	
Interaction	Score.	This	method	is	a	statistical	resampling	technique	that	estimates	the	
distribution	of	a	metric	by	repeatedly	sampling	from	the	observed	data	with	replacement.	
	
To	apply	the	bootstrap	method,	the	original	dataset	was	used	as	the	basis	for	resampling.	A	
total	of	1000	bootstrap	samples	were	generated,	where	each	bootstrap	sample	was	the	
same	size	as	the	original	dataset	but	contained	values	randomly	drawn	with	replacement.	
This	process	ensures	that	some	observations	may	appear	multiple	times	in	a	single	sample,	
while	others	may	be	omitted.	For	each	of	these	1000	resampled	datasets,	the	desired	metric	
(e.g.,	PECR,	ODER,		IRA,	and	Interaction	score)	was	computed.	This	resulted	in	a	
distribution	of	1000	metric	values	based	on	the	resampled	data.	
	
The	95%	CI	for	each	metric	was	then	determined	by	sorting	the	1000	bootstrap	estimates	
in	ascending	order	and	identifying	the	values	corresponding	to	the	2.5th	and	97.5th	
percentiles.	These	percentile	values	represent	the	lower	and	upper	bounds	of	the	
con7idence	interval,	respectively.	By	employing	the	bootstrap	method,	we	ensured	that	the	
con7idence	intervals	for	all	metrics	were	calculated	without	relying	on	assumptions	about	
the	underlying	data	distribution,	making	the	results	both	reliable	and	interpretable.		
This	resampling	approach	provides	robust	estimates	of	variability	without	assuming	a	
speci7ic	data	distribution.		
	
However,	in	cases	where	a	metric	achieved	a	perfect	score	(e.g.,	PECR	=	100%	for	
cardiomegaly),	the	bootstrap	method	produced	degenerate	intervals	such	as	[100.0%,	
100.0%],	which	fail	to	capture	the	underlying	uncertainty.	To	address	this,	we	used	the	
Wilson	score	interval,	a	more	reliable	method	for	estimating	con7idence	intervals	for	
proportions	near	boundary	values	(0%	or	100%).	The	Wilson	interval	was	computed	using	
a	signi7icance	level	of	α	=	0.05,	corresponding	to	a	95%	con7idence	level.	This	method	was	
speci7ically	applied	for	calculating	the	CI	for	PECR	in	the	cardiomegaly	subgroup.	
	



	
 

	

Results	of	the	Chexformer	on	the	test	set	of	ChexFormer	
dataset	

	

	

	
	

	
Supplementary	Figure	9:	ChexFormer's	performance	evaluated	on	the	Chexpert	
dataset.	The	confusion	matrix	illustrates	ChexFormer's	classiFication	performance	
for	each	abnormality.	

	



	
 

	

Results	of	the	STARE	module	on	the		test	set	of	REFLACX	and	
EGD-CXR	dataset	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Supplementary	Table	4.	Mean	IoU	scores	for	the	predicted	ROIs	corresponding	to	
each	abnormality.	The	table	summarizes	the	performance	of	the	STARE	module	
across	two	datasets	(EGD-CXR	and	REFLACX).	95%	CIs	were	computed	using	
bootstrapping.	ROI	=	Region	of	Interest;	STARE:	Spatio-Temporal	Abnormal	Region	
Extractor		

	

Abnormality		 Mean-IoU	(	EGD-CXR)	

	

Mean-IoU	(REFLACX)	

Cardiomegaly	 0.58	[0.53,0.62]	 0.56	[0.50,0.61]	

Atelectasis	 0.53	[0.49,0.58]	 0.60	[0.57,0.62]	

Edema	 0.63	[0.59,0.67]	 0.63	[0.60,0.67]	

Pleural	Effusion	 0.51	[0.48,0.54]	

	
0.49	[0.47,0.50]	

Lung	Opacity	 0.59	[0.54,0.63]	 0.61	[0.59,0.64]	



	
 

	

Abnormality	speciHic	IRA	Scores	
	
Abnormality	 Random	Masking-Based	

Error	Dataset	(IRA)	(%)	

Uncertainty	Masking-

Based	Error	Dataset	(IRA)	

(%)	

Cardiomegaly	 83.0	[74.0,	90.0]	 84.0	[69.0,	100.0]	

Atelectasis	 60.0	[54.0,	66.0]	 56.0	[48.0,	65.0]	

Pleural	Effusion	 50.0	[38.0,	63.0]	 45.0	[38.0,	54.0]	

Lung	Opacity	 61.0	[55.0,	69.0]	 62.0	[57.0,	68.0]	

Edema	 64.0	[54.0,	73.0]	 60.0	[53.0,	67.0]	

	

Supplementary	Table	5.	Mean	IRA	scores	for	each	abnormality	across	both	simulated	
error	datasets.	This	table	summarizes	the	performance	of	the	CoRaX	system	in	
predicting	ROIs	for	missed	abnormalities,	stratiFied	by	abnormality	type.	IRA	=	
Interpretable	Referral	Accuracy.	
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Collabora've Integra'on of AI and Human Exper'se to Improve
Detec'on of Chest Radiograph Abnormali'es

Key Result

Datasets:

Methods:

Results:
• CoRaX corrected 21.3% and 34.6% of errors, defined as altera9ons

in abnormali9es, in the two simulated error datasets.

• In a collabora9ve diagnos9c seCng, the system had a non-zero
interac9on score in 85.7% and 78.4% of interac9ons for the error
datasets, indica9ng its poten9al to aid radiologists in diagnos9c
decision-making.

• The collabora9ve AI solu9on, named Collabora9ve Radiology
Expert (CoRaX), employs a large mul9modal model to analyze
image embeddings, eye gaze data, and radiology reports,
aiming to rec9fy perceptual errors in CXR interpreta9on.

• The system's referral-making process, the quality of referrals,
and its performance within collabora9ve diagnos9c seCngs
were evaluated.

• EGD-CXR dataset (n = 1,071 CXRs)
• REFLACX dataset ( n = 2,440 CXRs)

The proposed system, CoRaX, demonstrated poten9al to aid
radiologists to aid radiologists in detec9on of abnormali9es on
chest radiographs by iden9fying and correc9ng perceptual errors.

MAF: missing abnormality finder
STARE: spa:o-temporal abnormal region extractor


