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Abstract—Synthesizing expressive facial animation is a very challenging topic within the graphics community. In this paper, we

present an expressive facial animation synthesis system enabled by automated learning from facial motion capture data. Accurate

3D motions of the markers on the face of a human subject are captured while he/she recites a predesigned corpus, with specific

spoken and visual expressions. We present a novel motion capture mining technique that “learns” speech coarticulation models for

diphones and triphones from the recorded data. A Phoneme-Independent Expression Eigenspace (PIEES) that encloses the dynamic

expression signals is constructed by motion signal processing (phoneme-based time-warping and subtraction) and Principal

Component Analysis (PCA) reduction. New expressive facial animations are synthesized as follows: First, the learned coarticulation

models are concatenated to synthesize neutral visual speech according to novel speech input, then a texture-synthesis-based

approach is used to generate a novel dynamic expression signal from the PIEES model, and finally the synthesized expression signal

is blended with the synthesized neutral visual speech to create the final expressive facial animation. Our experiments demonstrate that

the system can effectively synthesize realistic expressive facial animation.

Index Terms—Facial animation, expressive speech, animation synthesis, speech coarticulation, texture synthesis, motion capture,

data-driven.

�

1 INTRODUCTION

FACIAL animation is one alternative for enabling natural
human computer interaction. Computer facial anima-

tion has applications in many fields. For example, in the
entertainment industry, realistic virtual humans with facial
expressions are increasingly used. In communication
applications, interactive talking faces not only make the
interaction between users and machines more fun, but also
provide a friendly interface and help to attract users [1], [2].
Among the issues concerning the realism of synthesized
facial animation, humanlike expression is critical. Despite
the need for synthesis of expressive facial animation in
these various applications, it still remains a very challen-
ging topic for the computer graphics community. This is
because the deformation of a moving face is complex and
we humans have an inherent sensitivity to the subtleties of
facial motion, but also because human emotion is an

extremely difficult interdisciplinary research topic studied
by researchers in computer graphics, artificial intelligence,
communication, psychology, etc.

In this paper, we present an expressive facial anima-
tion synthesis system that learns speech coarticulation
models and expression spaces from recorded facial
motion capture data. After users specify the input speech
(or texts) and its expression type, the system automati-
cally generates corresponding expressive facial animation.
The preliminary results of this work have been published
in conferences [3], [4].

1.1 System Description

Fig. 1 illustrates the schematic overview of the system. Our
system is composed of three stages: recording, modeling, and
synthesis. In the recording stage, expressive facial motion
and its accompanying audio are recorded simultaneously
and preprocessed. In the modeling stage, a new approach is
presented to learn speech coarticulation models from facial
motion capture data, and a Phoneme-Independent Expres-
sion Eigenspace (PIEES) is constructed. In the final synthesis
stage, based on the learned speech coarticulation models and
the PIEES from the modeling stage, corresponding expres-
sive facial animation is synthesized according to the given
input speech/texts and expression.

This synthesis system consists of two subsystems:
neutral speech motion synthesis and dynamic expression
synthesis. In the speech motion synthesis subsystem, it
learns explicit but compact speech coarticulation models
from recorded facial motion capture data, based on a
weight-decomposition method [5]. Given a new phoneme
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sequence, this system synthesizes corresponding neutral

visual speech motion by concatenating the learned coarti-

culation models. In the dynamic expression synthesis

subsystem, first a Phoneme-Independent Expression

Eigenspace (PIEES) is constructed by a phoneme-based

time warping and subtraction, and then novel dynamic

expression sequences are generated from the constructed

PIEES by texture-synthesis approaches [6], [7]. Finally, the

synthesized expression signals are weight-blended with the

synthesized neutral speech motion to generate expressive

facial animation. The compact size of the learned speech

coarticulation models and the PIEES make it possible that

our system can be used for on-the-fly facial animation

synthesis.
To make the concepts used in this work clear, “visual

speech animation” (or “lip animation”) represents the facial

motion only in the lower face region (around the mouth

area) and “expressive facial animation” represents expres-

sive facial motion in the full face region (including the

upper face region and the lower face region) because

motion only in the lower face region is not enough to

convey complete emotions. The remainder of the paper is

organized as follows: Section 2 reviews previous and

related work in facial animation. Section 3 describes the

capture and preprocessing of a database of expressive facial

motion capture data. Section 4 describes the learning of

accurate speech coarticulation models from facial motion

capture data. Section 5 details the construction of a

phoneme-independent expression eigenspace. Section 6

describes the creation of novel expressive facial animation,

given novel input speech/texts and expressions. Section 7

shows the synthesized expressive facial motion results and

their evaluation. Finally, conclusions and discussion are

given in Section 8.

2 RELATED WORK

In this section, we review related facial animation work. An

extensive overview can be found in the well-known facial

animation book by Parke and Waters [8].

2.1 Expressive Facial Animation

Cassell et al. [9] present a rule-based automatic system
that generates expressions and speech for multiple
conversation agents. In their work, the Facial Action
Coding Systems (FACS) [10] are used to denote static
facial expressions. Noh and Neumann [11] present an
“expression cloning” technique to transfer existing ex-
pressive facial animation between different 3D face
models. This technique and the extended variant by
Pyun et al. [12] are very useful for transferring expressive
facial motion. However, they are not generative; they
cannot be used for generating new expressive facial
animation. Chuang et al. [13] learn a facial expression
mapping/transformation from training footage using bi-
linear models and, then, this learned mapping is used to
transform input video of neutral talking to expressive
talking. In their work, the expressive face frames retain
the same timing as the original neutral speech, which
does not seem plausible in all cases. Cao et al. [14]
present a motion editing technique that applies Indepen-
dent Component Analysis (ICA) onto recorded expressive
facial motion capture data and, then, perform more
editing operations on these ICA components, interpreted
as expression and speech components separately. This
approach is used only for editing existing expressive
facial motion, not for the purpose of synthesis. Zhang et
al. [15] present a geometry-driven technique for synthe-
sizing expression details on 2D face images. This method
is used for static 2D expression synthesis, but the
applicability of this method to animate images and
3D face models has not been established. Blanz et al.
[16] present an animation technique to reanimate faces in
images and video by learning an expression and viseme
space from scanned 3D faces. This approach addresses
both speech and expressions, but static expression poses
do not provide enough information to synthesize realistic
dynamic expressive motion. The success of expressive
speech motion synthesis by voice puppetry [17] depends
heavily on the choice of audio features used and, as
pointed out by Brand [17], the optimal audio feature
combination for expressive speech motion is still an open
problem. Kshirsagar et al. [18], [19] present a PCA-based
method for generating expressive speech animation. In
their work, static expression configurations are embedded
in an expression and viseme space, constructed by PCA.
Expressive speech animation is synthesized by weighted
blending between expression configurations (correspond-
ing to some points in the expression and viseme space)
and speech motion. Additionally, significant effort has
been made on expressive virtual characters in complex
scenarios [20], [21].

2.2 Speech Animation

The key part of speech animation synthesis is modeling

speech coarticulation. In linguistics literature, speech

coarticulation is defined as follows: phonemes are not

pronounced as an independent sequence of sounds, but,

rather, the sound of a particular phoneme is affected by

adjacent phonemes. Visual speech coarticulation is analo-

gous. Phoneme-driven methods require animators to design
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Fig. 1. This figure illustrates the three main stages of our system:
recording, modeling, and synthesis. In the recording stage, expressive
facial motion and its accompanying audio are recorded simultaneously
and preprocessed. In the modeling stage, a new approach is used to
learn speech coarticulation models from facial motion capture data, and
a Phoneme-Independent Expression Eigenspace (PIEES) is con-
structed. In the final synthesis stage, based on the learned speech
coarticulation models and the PIEES from the modeling stage,
expressive facial animation is synthesized according to the given input
speech/texts and specified expression.



key mouth shapes and, then, empirical smooth functions

[22], [23], [24], [25], [26], [38] or coarticulation rules [27],

[28], [29] are used to generate speech animation. The Cohen-

Massaro coarticulation model [22] controls each viseme

shape using a target value and a dominance function, and

the weighted sum of dominance values determines final

mouth shapes. Recent coarticulation work [23], [25], [26]

further improved the Cohen-Massaro coarticulation model.

For example, Cosi et al. [25] added a temporal resistance

function and a shape function for more general cases, such

as fast speaking rates. Goff and Benoit [23] calculated the

model parameter value of the Cohen-Massaro model by

analyzing parameter trajectories measured from a French

speaker. Rule-based coarticulation models [27], [28] leave

some visemes undefined based on their coarticulation

importance and phoneme contexts. Bevacqua and Pela-

chaud [29] presented an expressive qualifier, modeled from

recorded real motion data, to make expressive speech

animation. Physics-based methods [30], [31], [32], [33] drive

mouth movement by simulating the facial muscles. Physics-

based approaches can achieve synthesis realism, but it is

hard to solve the optimal parameter values without

considerable computing time and tuning efforts.
Data-driven approaches [1], [17], [34], [35], [36], [37]

synthesize new speech animation by concatenating pre-
recorded motion data or sampling from statistical models
learned from real data. Bregler et al. [34] present the “video
rewrite” method for synthesizing 2D talking faces given
novel speech input, based on the collected “triphone video
segments.” Instead of using ad hoc coarticulation models
and ignoring dynamics factors in speech, this approach
models the coarticulation effect with “triphone video
segments,” but it is not generative (i.e., the coarticulation
cannot be applied to other faces without retraining). Cosatto
[1] and Cao et al. [35] further extend “the triphone
combination idea” used in “video rewrite” [34] to longer
phoneme segments in order to generate new speech
animation. Brand [17] learns an HMM-based facial control
model by an entropy minimization learning algorithm from
voice and video training data and, then, effectively
synthesizes full facial motions from a novel audio track.
This approach models coarticulation, using the Viterbi
algorithm through vocal HMMs to search for the most likely
facial state sequence, which is used for predicting facial
configuration sequences. Ezzat et al. [36] learn a multi-
dimensional morphable model from a recorded video
database that requires a limited set of mouth image
prototypes and use the magnitude of diagonal covariance
matrices of phoneme clusters to represent coarticulation
effects: The larger covariance of a phoneme cluster means
this phoneme has a smaller coarticulation and vice versa.
Instead of constructing a phoneme segment database [1],
[34], [35], [36], Kshirsagar and Thalmann [37] present a
syllable-based approach to synthesize novel speech anima-
tion. In their approach, captured facial motions are
categorized into syllable motions and, then, new speech
animation is achieved by concatenating syllable motions
optimally chosen from the syllable motion database.
However, most of the above data-driven approaches are

restricted to synthesizing neutral speech animation and
their applications for expressive speech animation synthesis
have not been fully demonstrated yet. Additionally, in the
above data-driven approaches, speech coarticulation is
expressed as an implicit function (e.g., covariance) of the
particular facial data. An explicit coarticulation model that
can be applied to other face data has not been developed.
Additional in-depth discussions on coarticulation can be
found in [22].

2.3 Our Model

The speech coarticulation modeling approach presented in

this work constructs explicit and compact speech coarticu-

lation models from real human motion data. Both coarticu-

lation between two phonemes (diphone coarticulation) and

coarticulation among three phonemes (triphone coarticula-

tion) are learned. The presented coarticulation modeling

approach offers two advantages: 1) It produces an explicit

coarticulation model that can be applied to any face model

rather than being restricted to “recombinations” of the

original facial data. 2) It naturally bridges data-driven

approaches (that accurately model the dynamics of real

human speech) and flexible keyframing approaches

(preferred by animators).

Our coarticulation modeling approach can be easily

extended to model the coarticulation of longer phoneme

sequences, e.g., those with more than three phonemes, with

the cost of requiring significantly more training data

because of the “combinational sampling.” As a reasonable

trade-off between training data and output realism,

diphone and triphone coarticulation models are used in

this work.

The dynamic expression synthesis approach presented in

this work shares similarities with [18], [19], but the notable

distinction of our approach is that expressions are treated as

a dynamic process, not as static poses as in [18], [19]. In

general, the expression dynamics include two aspects:

1) Expressive Motion Dynamics (EMD): Even in an invariant

level of anger, people seldom keep their eyebrows at the

same height for the entire duration of the expression.

Generally, expressive motion is a dynamic process, not

statically corresponding to some fixed facial configurations;

2) Expression Intensity Dynamics (EID): Both the intensity of

human expressions and the type of expression may vary

over time, depending on many factors, including speech

contexts. Varying blending weights over time in [18], [19]

can simulate the EID, but the EMD are not modeled because

the same static expressive facial configurations are used. In

our approach, the EMD is embodied in the constructed

PIEES as continuous curves. The optional expression-

intensity control is used for simulating EID, similar to

[18], [19].

3 DATA ACQUISITION AND PREPROCESSING

A VICON motion capture system [39] with camera rigs
(Fig. 2a) with a 120 Hz sampling rate was used to capture
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the expressive facial motion data of an actress speaking at a

normal pace, with markers on her face. The actress was

directed to speak a custom phoneme-balanced corpus

(about 200 phoneme-rich sentences). The corpus was

designed to cover most of the frequently used diphone

combinations analyzed from the CMU Sphinx English

dictionary. The actress spoke the same corpus four times

(each time with different expression). In this work, four

basic expressions (neutral, happy, angry, and sad) are

considered. The actress was asked to speak the sentences

with full intensity expressions. The markers’ motion and

aligned audio were recorded by the system simultaneously.

Fig. 2 illustrates the facial motion capture.
The FESTIVAL system [40] was used to perform

phoneme-alignment by aligning each phoneme with its

corresponding motion capture segments. This alignment

work was done by inputting audio and its accompanying

text scripts into the speech recognition program in a forced-

alignment mode. Fig. 3 visualizes the phoneme-alignment

result of a recorded sentence, “That dress looks like it comes

from Asia.”
After that, the motion capture data were normalized:

1. All data points were translated in order to force a
certain nose point to be the local coordinate center of
each frame (Fig. 2b).

2. One frame with neutral and closed-mouth head pose
was chosen as a reference frame.

3. Three approximately rigid points (the nose point
and corner points of eyes) define a local coordinate
system for each frame (Fig. 2b).

4. Each frame was rotated to align it with the reference
frame.

4 LEARNING SPEECH COARTICULATION

In this section, we detail the construction of explicit
speech coarticulation models. Since we specifically focus
on speech coarticulation modeling here, only facial
motion capture data with a neutral expression are used
to learn “speech coarticulation.” Due to occlusions caused
by head motion and tracking errors, only 10 markers
around the mouth area (see red points on Fig. 2c) are
used. The dimensionality of these motion vectors (con-
catenated 10-markers’ 3D motion) is reduced using the
EM-PCA algorithm [42] because, instead of directly
applying Singular Value Decomposition (SVD) on the
full data set, the EM-PCA algorithm solves eigenvalues
and eigenvectors iteratively using the Expectation-Max-
imization (EM) algorithm and it uses less memory than
regular PCA. The motion data are reduced from the
original 30 dimensions to five dimensions, covering 97.5
percent of the variation. In this section, these phoneme-
annotated five-dimensional PCA coefficients are used.

Each phoneme with its duration is associated with a
PCA coefficient subsequence. The middle frame of its
PCA coefficient subsequence is chosen as a representative
sample of that phoneme (termed a phoneme sample). In
other words, a phoneme sample is a five-dimensional
PCA coefficient vector. Hence, the PCA coefficient
subsequence between two adjacent phoneme samples
captures the coarticulation transition between two pho-
nemes (termed coarticulation area). Fig. 4 illustrates
phoneme samples and coarticulation area. Then, the
weight decomposition method adopted from [5] is used
to construct phoneme-weighting functions.

Assume a motion capture segment M½Ps; Pe� for a
specific diphone pair ½Ps; Pe� is included in the database
(see Fig. 4). Ss is the phoneme sample of the starting
phoneme (phoneme Ps in this case) at time Ts, and Se is the
phoneme sample of the ending phoneme (phoneme Pe in
this case) at time Te. Notice that subscript s stands for the
starting phoneme and subscript e stands for the ending
phoneme in the above notations. Fj at time Tj is one
intermediate PCA coefficient frame in the coarticulation
area of M½Ps; Pe�. Equation (1) is solved to get the normal-
ized time tj (0 � tj � 1), and (2) is solved, in the least-square
sense, to get the weight of the starting phoneme, Wj;s, and
the weight of the ending phoneme, Wj;e:

tj ¼ ðTj � TsÞ=ðTe � TsÞ; ð1Þ
Fj ¼Wj;s � Ss þWj;e � Se; ð2Þ

where Ts � Tj � Te, Wj;s � 0 and Wj;e � 0.
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Fig. 2. Illustration of motion data acquisition. (a) The camera rigs of the
motion capture system. (b) A snapshot of the captured subject. (c) The
markers used in the data acquisition stage. Red points illustrate the
markers only used for coarticulation learning, due to occlusions caused
by head motion and tracking errors.

Fig. 3. Illustration of the phoneme-alignment result for a recorded
sentence, “That dress looks like it comes from Asia,” (using WaveSurfer
software [41]). Its corresponding phoneme transcript from the FESTI-
VAL system is “pau-dh-ae-t-d-r-eh-s-l-uh-k-s-l-ay-k-ih-t-k-ah-m-z-f-r-ah-
m-ey-zh-ax-pau.”

Fig. 4. Illustration of phoneme samples and a coarticulation area for

phonemes /ah/ and /k/.



Thus, we obtain two time-weight relations < tj;Wj;s >

and < tj;Wj;e > for any intermediate frame Fj. Assume

there are total N motion capture segments for this specific

diphone pair ½Ps; Pe� in the database and the coarticulaton

area of the ith segment has Ki frames. Then, the ga-

thered time-weight relations < tij;W
i
j;s > and < tij;W

i
j;e >

(1 � i � N and 1 � j � Ki) encode all the coarticulation

transitions for the diphone ½Ps; Pe� (the superscript of

notations denotes which motion capture segment). Two

polynomial curves FsðtÞ and FeðtÞ are used to fit these time-

weight relations. Mathematically, we solve FsðtÞ and FeðtÞ
by minimizing the following error functions:

eSðPs; PeÞ ¼
XN

i¼1

XKi

j¼1

ðFsðtijÞ �Wi
j;sÞ

2; ð3Þ

eEðPs; PeÞ ¼
XN

i¼1

XKi

j¼1

ðFeðtijÞ �Wi
j;eÞ

2; ð4Þ

where FsðtÞ and FeðtÞ are referred to as the Starting-

Phoneme Weighting Function and the Ending-Phoneme

Weighting Function, respectively. Here, we experimentally

constrain FsðtÞ and FeðtÞ to third degree polynomial

curves (see follow-up explanations). Fig. 5 and Fig. 6

illustrate two examples of these diphone coarticulation

functions. In Fig. 5 and Fig. 6, the decrease of phoneme /

ae/ during the transition from phoneme /ae/ to

phoneme /k/ is faster than that of the transition from

phoneme /ae/ to phoneme /p/.

For triphone coarticulations, (5) and (6) are analogously
solved to get three time-weight relations < tj;Wj;s > ,
< tj;Wj;m > , and < tj;Wj;e > :

tj ¼ ðTj � TsÞ=ðTe � TsÞ; ð5Þ
Fj ¼Wj;s � Ss þWj;m � Sm þWj;e � Se; ð6Þ

where Ss, Sm, and Se represent the three phoneme samples
and the weight values are nonnegative. In a similar way to
(3) and (4), three polynomial weighting functions FsðtÞ,
FmðtÞ, and FeðtÞ are used to fit these time-weight rela-
tions separately and eSðPs; Pm; PeÞ, eMðPs; Pm; PeÞ, and
eEðPs; Pm; PeÞ are similarly calculated. We termed FsðtÞ as
the Starting-Phoneme Weighting Function, FmðtÞ as the
Middle-Phoneme Weighting Function, and FeðtÞ as the
Ending-Phoneme Weighting Function. Fig. 7 and Fig. 8
illustrate these triphone coarticulation functions for two
triphone cases.

To determine the optimal degree for polynomial fitting, a
fitting cost including a model complexity term is mini-
mized. The fitting cost function Cð�Þ is defined as follows
((7), (8), and (9)):

Cð�Þ ¼
X

Pi;Pj

diCðPi; PjÞ þ
X

Pi;Pj;Pk

triCðPi; Pj; PkÞ; ð7Þ

CðPi; PjÞ ¼
X

�¼SjE
e�ðPi; PjÞ þ �

X

�¼fs;eg
k F� k2; ð8Þ

CðPi; Pj; PkÞ ¼
X

�¼SjMjE
e�ðPi; Pj; PkÞ þ �

X

�¼sjmje
k F� k2 : ð9Þ

Here, � is the penalty value for model complexity, and
k F k2 is the sum of function F coefficients’ squares.
Fig. 9 illustrates the cost curve as a function of the degree

DENG ET AL.: EXPRESSIVE FACIAL ANIMATION SYNTHESIS BY LEARNING SPEECH COARTICULATION AND EXPRESSION SPACES 5

Fig. 5. An example of diphone coarticulation functions (for a phoneme

pair /ae/ and /k/: FsðtÞ and FeðtÞ). Each star point in the figure represents

one calculated time-weight relation: (a)< tij;W
i
j;s > and (b)< tij;W

i
j;e > .

Fig. 6. Another example of diphone coarticulation functions (for a

phoneme pair /ae/ and /p/: FsðtÞ and FeðtÞ). Each star point in the figure

represents one calculated time-weight relation: (a) < tij;W
i
j;s > and

(b) < tij;W
i
j;e > .

Fig. 7. An example of triphone coarticulation functions. It illustrates

triphone coarticulation functions for triphone (/ey/, /f/, and /t/): (a) FsðtÞ,
(b) FmðtÞ, and (c) FeðtÞ.

Fig. 8. Another example of triphone coarticulation functions. It illustrates

the coarticulation weighting functions of triphone (/ey/, /s/, and /t/):

(a) FsðtÞ, (b) FmðtÞ, and (c) FeðtÞ.



of fitting curves. As we can see from Fig. 9, even without
the penalty (� ¼ 0), n = 3 is still a good trade-off point. In
this work, n = 3 is experimentally chosen for fitting
polynomial coarticulation curves in this work.

5 CONSTRUCT EXPRESSION EIGENSPACES

Since the same sentence material was used for capturing
facial motions of the four different expressions and spoken
by the subject without different emphasis, the phoneme
sequences, except for their timing, are the same. Based on
this observation, a phoneme-based time warping and
resampling (supersample/down-sample) is applied to the
expressive capture data to make them align strictly with
neutral data, frame by frame. We should note that the time
warping assumption is just an approximation (the velocity/
acceleration in the original expressive motion may be
impaired in this warping) since expressive speech modula-
tions do involve durational modifications [43]. In this step,
eyelid markers are ignored. Fig. 10 and Fig. 11 illustrate this
time-warping procedure for a short piece of angry data.

Subtracting neutral motion from aligned expressive
motion generates pure expressive motion signals. Since
they are strictly phoneme-aligned, we assume that the
above subtraction removes “phoneme-dependent” content

from expressive speech motion capture data. As such, the
extracted pure expressive motion signals are Phoneme-
Independent Expressive Motion Signals (PIEMS).

The extracted PIEMS are high dimensional when the
3D motion of all markers are concatenated together. As
such, all the PIEMS are put together and reduced to
three dimensions, covering 86.5 percent of the variation.
The EM-PCA algorithm [42] is used here. In this way, we
find a three-dimensional PIEES (Phoneme Independent
Expression Eigenspace), where expression is a continuous
curve. Fig. 12 and Fig. 13 illustrate the PIEES and the
PIEMS. Note that the personality of the captured subject
may be irreversibly reflected in the PIEES and only four
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Fig. 9. Fitting error with respect to the degree of fitted coarticulation

curves (red is for � ¼ 0, green is for � ¼ 0:00001, blue is for � ¼ 0:00005,

and black is for � ¼ 0:0001).

Fig. 10. Illustration of phoneme-based time-warping for the Y position of
a particular marker. Although the phoneme timings are different, the
warped motion (black) is strictly frame aligned with neutral data (red).

Fig. 11. Extracted phoneme-independent angry motion signal from

Fig. 10.

Fig. 12. Plot of three expression signals on the PIEES. It shows that sad

signals and angry signals overlap in some places.

Fig. 13. Plot of two expression sequences in the PIEES. It shows that
expression is just a continuous curve in the PIEES.



basic expressions are considered. Building person-
independent expression eigenspace and modeling the
universal expression space are beyond this work.

6 EXPRESSIVE FACIAL ANIMATION SYNTHESIS

6.1 Speech Motion Synthesis

After coarticulation models and PIEES are learned, our
approach synthesizes new expressive facial animation,
given novel phoneme-annotated speech/texts input and
key viseme mappings. A total of 13 key viseme shapes (each
corresponding to a visually similar group of phonemes, e.g.,
/p/, /b/, and /m/) are used. The mapped key shapes (key
visemes) are 3D facial control point (marker) configurations.
New speech animations are synthesized by blending these
key shapes by concatenating the learned coarticulation
models, and dynamic phoneme-independent expression
sequences are synthesized from the constructed PIEES by a
texture synthesis approach. Finally, these two are weight-
blended to produce expressive facial animation.

Given a phoneme sequence P1; P2; � � � ; Pn with timing
labels, blending these key shapes generates intermediate
animations. The simplest approach would be linear inter-
polation between adjacent pairs of key shapes, but linear
interpolation simply ignores any coarticulation effects.
Inspired by [35], a greedy searching algorithm is proposed
to concatenate these learned coarticulation models. Fig. 14
illustrates all possible juncture cases for adjacent diphones/
triphones. Only Fig. 14a needs motion blending. In this
work, the motion blending technique presented in [44] is
used. Equation (10) describes the used parametric rational
Gn continuous blending functions [44]:

bn;�ðtÞ ¼
�ð1� tÞnþ1

�ð1� tÞnþ1 þ ð1� �Þtnþ1
; ð10Þ

where t is in [0,1], � is in (0,1), and n � 0. Algorithm 1
describes the procedure of the speech motion synthesis
algorithm. Note that in the case that diphone models for
specific diphone combinations are not available (not
included in the training data), cosine interpolation is used
as an alternative.

Algorithm 1 MotionSynthesis

Input: P1!n;Keys

Output: Motion

1: i 1, prevTriphone FALSE, Motion ¼ �
2: while i < n do

3: if iþ 2 � n and triMðPi ! Piþ2Þ exists then

4: NewMo ¼ synthðtriMðPi ! Piþ2Þ; KeysÞ
5: if preTriphone then

6: Motion ¼ catBlendðMotion;NewMoÞ
7: else

8: Motion ¼ concatðMotion;NewMoÞ
9: end if

10: preTriphone ¼ TRUE, i ¼ iþ 1

11: else

12: if preTriphone then

13: preTriphone ¼ FALSE

14: else

15: NewMo ¼ synthðdiMðPi ! Piþ1Þ; KeysÞ
16: Motion ¼ concatðMotion;NewMoÞ
17: end if

18: i ¼ iþ 1

19: end if

20: end while

6.2 Expressive Motion Synthesis

On the expression side, from Fig. 13, we observe that

expression is just a continuous curve in the low-

dimensional PIEES. Texture Synthesis, originally used in

2D image synthesis, is a natural choice for synthesizing

novel expression sequences. Here, nonparametric sampling

methods [6], [7] are used. The patch-based sampling

algorithm [7] is chosen due to its real-time efficiency. Its

basic idea is to grow one texture patch (fixed size) at a time,

randomly chosen from qualified candidate patches in the

input texture sample. In this work, each texture sample

(analogous to a pixel in the 2D image texture case) consists

of three elements: the three coefficients of the projection of a

motion vector on the three-dimensional PIEES. Fig. 15

sketches this synthesis procedure. The parameters of patch-

based sampling [7] for this case are patch size = 30, the size

of the boundary zone = 5, and the tolerance extent = 0.03.

As mentioned in the data acquisition section (Section 3),

the expressive facial motion data used for extracting the

PIEES are captured with full expressions. However, in real-

world applications, humans usually vary their expression

intensity over time. Thus, an optional expression-intensity

curve scheme is provided to intuitively simulate the EID.

This expression-intensity curve is used to control the

DENG ET AL.: EXPRESSIVE FACIAL ANIMATION SYNTHESIS BY LEARNING SPEECH COARTICULATION AND EXPRESSION SPACES 7

Fig. 15. Illustration of patch-based sampling for expression signal

synthesis in this work.

Fig. 14. Illustration of the junctures of adjacent diphones and triphones.

The overlapping part (the semitransparent part) in the juncture of two

triphones (a) needs to be smoothed. Note that there is another diphone-

triphone configuration, similar to (b).



weighted-blending of synthesized expression signals and

synthesized neutral visual speech. Ideally, the EID (expres-

sion intensity curves here) should be automatically ex-

tracted from the given audio by emotion-recognition

programs [45], [46], [47]. The optional expression-intensity

control is a manual alternative to this program.

Basically, an expression intensity curve can be any

continuous curve in time versus expression-intensity space,

and its range is from 0 to 1, where 0 represents “no

expression” (neutral) and 1 represents “full expression.” By

interactively controlling expression-intensity curves, users

can conveniently control expression intensities over time.

6.3 Mapping Marker Motions to 3D Faces

After the marker motion data are synthesized, we need to
map them to 3D face models. The target face model is a
NURBS face model composed of 46 blendshapes (Fig. 17),
such as leftcheekRaise; jawOpen; � � �f g. The weight range of
each blendshape is 0; 1½ �. A blendshape model B is the
weighted sum of some predesigned shape primitives [48]:

B ¼ B0 þ
XN

i¼1

Wi �Bi; ð11Þ

where B0 is a base face, Bi are delta blendshape bases, and
Wi are blendshape weights. In this work, B and Bi (11) are
vectors that concatenate all markers’ 3D positions.

An RBF-regression-based approach [49] is used to
directly map synthesized marker motions to blendshape
weights. In the first stage (capture stage), a motion capture
system and a video camera are simultaneously used to
record the facial motions of a human subject. The audio
recordings from the two systems are misaligned with a
fixed time-shift because of slight differences in the start time
of recording. The manual alignment of these two audio
recordings results in strict alignments between mocap
frames and video frames (referred to as mocap-video pairs).
In the second stage, we carefully select a few reference
mocap-video pairs that cover the spanned space of visemes
and emotions as completely as possible. In the third stage,

motion capture data were reduced to a low dimensional
space by Principal Component Analysis (PCA). Meanwhile,
based on the selected reference video frames (face snap-
shots), users manually tune the weights of the blendshape
face model to perceptually match the model and the
reference images, which creates supervised correspon-
dences between the PCA coefficients of motion capture
frames and the weights of the blendshape face model
(referred to as mocap-weight pairs). Taking the reference
mocap-weight pairs as training examples, the Radial Basis
Function (RBF) regression technique is used to automati-
cally compute blendshape weights for new motion capture
frames. Fig. 16 illustrates this process. More details about
this mapping algorithm can be found in [49].

In summary, the complete synthesis algorithm can be
described in Algorithm 2. Here, procedure MotionSynthesis
synthesizes neutral visual speech using the above Algo-
rithm 1, procedure ExprSynthesis synthesizes novel expres-
sion signals with a specified expression from the PIEES, and
the procedure Blend combines these two together to
generate expressive facial motion. Note that this blending
is done on the motion marker level. The final procedure
Map2Model maps the synthesized marker motion to a
specific 3D face model.

Algorithm 2 ExpressiveFacialAnimationSynthesis

Input: a phoneme sequence with timing P ½1 . . .N�
Input: specified key shapes keyShapes

Input: specified expression information Expr

Input: specified 3D face models Model

Output: AnimFace

1: SpeechSeq ¼MotionSynthesisðP; keyShapesÞ
2: ExpSignal ¼ ExprSynthesisðPIEES;ExprÞ
3: ExprMotion ¼ BlendðSpeechSeq; ExpSignalÞ
4: AnimFace ¼Map2ModelðModel; ExprMotionÞ

7 RESULTS AND EVALUATIONS

To evaluate the performance of this expressive facial
animation synthesis system, we designed two different
tests. The first test is to synthesize new expressive visual
speech animation given novel audio/text inputs. The
second test is used to verify this approach by comparing
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Fig. 16. Schematic overview of mapping marker motions to

blendshape weights. It is composed of four stages: data capture

stage, creation of mocap-video pairs, creation of mocap-weight pairs,

and RBF regression.

Fig. 17. Illustration of the used blendshape face model. (a) The smooth

shaded model. (b) The rendered model.



ground-truth motion capture data and synthesized speech

motion via trajectory comparisons.
New sentences (not used in the training) and music are

used for synthesizing novel speech animation. First,

recorded speech (or music), with its accompanying texts

(or lyrics), was inputted to the phoneme-alignment pro-

gram (speech recognition program in a force-alignment

mode) to generate a phoneme sequence with timing labels.

Then, this phoneme sequence was fed into the facial

animation synthesis system to synthesize corresponding

expressive facial animation. Fig. 18 and Fig. 19 illustrate

some frames of synthesized expressive facial animation.
Modeling eye gaze, blink, teeth, and tongue motion are

outside the current scope of this work. For the demonstra-

tion video, the automated eye motion method [50] is used to

generate eye motion, and the multiresolution hair modeling

and rendering system [51] is used. Teeth are assumed to

have the same rotation as the jaw with respect to a rotation

axis (a straight line below the line between two ears) and

jaw rotation angles can be estimated from synthesized

mouth motion key points. For tongue motions, instead of

using a highly deformable tongue model [52], [26], we

simply designed key tongue shapes for phonemes and

linear interpolation is used to generate the tongue motion.
We evaluated the learned speech coarticulation models

by trajectory comparisons. Several sentences of the original

speaker’s audio (not used in the previous training stage)

were used to synthesize neutral speech animation using this

approach. The synthesized motion of the same 10 markers

around the mouth area is then compared frame-by-frame

with the corresponding ground-truth data. In this evalua-

tion, manually picked key shapes are used that may not

perfectly match the motion capture geometry. Fig. 20 shows

comparison results for a lower lip marker of one phrase. As

we can see from Fig. 20, these trajectories are similar, but

the velocity curves have more obvious differences at some

places. Its underlying reason could be that, in current work,

only markers’ 3D positions are used during the modeling

stage, while velocity information is ignored. Hence, an

interesting future extension could be combining position

and velocity for facial animation learning.

8 CONCLUSIONS AND DISCUSSION

In this paper, a novel system is presented for synthesizing
expressive facial animation. It learns speech coarticulation
models from real motion capture data by using a weight-
decomposition method and the presented automatic tech-
nique for synthesizing dynamic expression models in both
the EMD and the EID, improving on previous expression
synthesis work [18], [19]. The approach presented in
this work learns personality (speech coarticulations and
phoneme-independent expression eigenspaces) using data
captured from the human subject. The learned personality
can then be applied to other target faces. The statistical
models learned from real speakers make the synthesized
expressive facial animation more natural and lifelike. Our
coarticulation modeling approach can be easily extended to
model the coarticulation effects among longer phoneme
sequences (e.g., five to six-phoneme length) at the cost of
requiring significantly more training data.

This system can be used for various applications. For
animators, after initial key shapes are provided,
this approach can serve as a rapid prototyping tool for
generating natural-looking expressive facial animation
while simultaneously preserving the expressiveness of the
animation. After the system outputs generated facial
animation, animators can refine the animation by adjusting
the visemes and timing as desired. Because of the very
compact size of the coarticulation models and the PIEES
learned by this approach, it can be conveniently applied
onto mobile-computing platforms (with limited memory),
such as PDAs and cell phones.

The coarticulation modeling method presented in this
work is efficient and reasonably effective, but it does not
differentiate between varying speaking rates. As such,
future work could include extending current coarticulation
models to handle different speaking rates and affective
states; for example, investigating how the learned coarticu-
lation functions (curves) change when speaking rates are
increased or decreased. Another major limitation of this
coarticulation work is that it depends on “combinational
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Fig. 18. Some frames of synthesized happy facial animation.

Fig. 19. Some frames of synthesized angry facial animation. Fig. 20. Comparisons with ground-truth marker motion and synthesized
motion. The red line denotes ground-truth motion and the blue denotes
synthesized motion. The top row illustrates marker trajectory compar-
isons and the bottom row illustrates velocity comparisons. Note that the
sampling frequency here is 120 Hz. The phrase is “explosion in
information technology.”



sampling” from training data. Hence, the best results
require that the training data have a complete set of
phoneme combinations. Additionally, the current system
still requires animators to provide key viseme shapes.
Future work on automatically extracting key visemes
shapes from motion capture data would be a promising
way to replace this manual step.

In terms of validating our work, we are aware that
objective comparisons are not enough; conducting audio-
visual perceptual experiments could be another useful way
to evaluate this work, which we plan to pursue in the
future. Another consideration is that only 10 markers
around the lips do not capture all the details of lip motion;
for example, when the lips are closed, inner lips could
penetrate each other. We plan to use more markers for facial
motion capture in order to further improve and validate
this work.

A limitation of the expression synthesis approach in this
work is that the interaction between expression and speech
is simplified. We assume there is a PIEES extracted by
phoneme-based subtraction. The time-warping algorithm
used in expression eigenspace construction may cause the
loss of velocity/acceleration that is essential to expressive
facial motion. We plan to investigate the possibility of
learning statistical models for velocity/acceleration patterns
in captured expressive speech motion. Transforming these
learned patterns back to the synthesized facial motion will
further enhance its expressive realism.

A large amount of expressive facial motion data are
needed to construct the PIEES, because it is difficult to
anticipate in advance how much data are needed to avoid
getting “stuck” during the synthesis process. However,
after some animation is generated, it is easy to evaluate the
variety of synthesized expressions and more data can be
obtained if necessary. We plan to look into some automatic
ways to avoid “getting stuck” in case the training data are
not enough, for example, if the synthesis algorithm cannot
find enough qualified candidates with a predefined thresh-
old value, the algorithm should be able to adjust this
threshold value adaptively and automatically.

Another limitation of the expression synthesis work is
that some visemes may lose their characteristic shapes
when blending expression with neutral ones. In future
work, we plan to avoid this problem by using “constrained
texture synthesis” for expression signal synthesis that
imposes certain hard constraints at specified places.
Another promising way to avoid the possible relaxation of
characteristic shapes is to learn a speech coarticulation
model for each affective state.

Most of the learning-based systems face one common
difficult concern: what are the optimal parameter deci-
sions/trade-offs involved in the learning system and how
do we determine these parameters from the data? Our
system has similar issues too. In the part of learning speech
coarticulation, we have to make experimental decisions on
the fitting degree and the length of learned phoneme
sequences (e.g., three for triphones). Additionally, another
trade-off between the dimensionality of the learned expres-
sion space and the quality of synthesized expressions is
concerned in the expression synthesis part. Understanding

these trade-offs and their effects on the system performance
would be an important and interesting direction to be
pursued in the future.

We are aware that expressive eye motion and head
motion are critical parts of expressive facial animation since
the eye is one of the strongest cues to the mental state of a
person and head movement is somehow correlated with
speech contents [53], [54]. Simply adding prerecorded head
movement and eye motion onto new synthesized talking
faces that speak novel sentences may create unrealistic
mouth-head gesture coordination. Future work on speech-
driven expressive eye motion and head motion synthesis
can greatly enhance the realism of synthesized expressive
facial animation.
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