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1 Introduction

Since the pioneering work of Frederic I. Parke [1] in 1972, significant research
efforts have been attempted to generate realistic facial modeling and anima-
tion. The most ambitious attempts perform the face modeling and rendering
in real time. Because of the complexity of human facial anatomy and our
inherent sensitivity to facial appearance, there is no real time system that
generates subtle facial expressions and emotions realistically on an avatar.
Although some recent work produces realistic results with relatively fast per-
formance, the process for generating facial animation entails extensive human
intervention or tedious tuning. The ultimate goal for research in facial model-
ing and animation is a system that 1) creates realistic animation, 2) operates
in real time, 3) is automated as much as possible, and 4) adapts easily to
individual faces.

Recent interest in facial modeling and animation is spurred by the increas-
ing appearance of virtual characters in film and video, inexpensive desktop
processing power, and the potential for a new 3D immersive communication
metaphor for human-computer interaction. Much of the facial modeling and
animation research is published in specific venues that are relatively unknown
to the general graphics community. There are few surveys or detailed histor-
ical treatments of the subject [2]. This survey is intended as an accessible
reference to the range of reported facial modeling and animation techniques.

Strictly classifying facial modeling and animation techniques is a difficult
task, because exact classifications are complicated by the lack of exact bound-
aries between methods and the fact that recent approaches often integrate
several methods to produce better results. In this survey, we roughly classify
facial modeling and animation techniques into the following categories: blend
shape or shape interpolation (Section 2), parameterizations (Section 3), Facial
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Action Coding System based approaches (Section 4), deformation based ap-
proaches (Section 5), physics based muscle modeling (Section 6), 3D face mod-
eling (Section 7), performance driven facial animation (Section 8), MPEG-4
facial animation (Section 9), visual speech animation (Section 10), facial an-
imation editing (Section 11), facial animation transferring (Section 12), and
facial gesture generation (Section 13). It should be noted that because the
facial animation field has grown into a complicated and broad subject, this
survey chapter does not cover every aspect of virtual human faces, such as
hair modeling and animation, tongue and neck modeling and animation, skin
rendering, wrinkle modeling, etc.

2 Blend Shapes or Shape Interpolation

Shape interpolation (blend shapes, morph targets and shape interpolation)
is the most intuitive and commonly used technique in facial animation prac-
tice. A blendshape model is simply the linear weighted sum of a number of
topologically conforming shape primitives (Eq. 1).

vj =
∑

wkbkj (1)

In the above Eq. 1, vj is the jth vertex of the resulting animated model, wk is
blending weight, and bkj is the jth vertex of the kth blendshape. The weighted
sum can be applied to the vertices of polygonal models, or to the control ver-
tices of spline models. The weights wk are manipulated by the animator in the
form of sliders (with one slider for each weight) or automatically determined
by algorithms [3]. It continues to be used in projects such as the Stuart Lit-

tle, Star Wars, and Lord of the Rings and was adopted in many commercial
animation software packages such as Maya and 3D Studio Max. The simplest
case is an interpolation between two key-frames at extreme positions over a
time interval (Figure 1.1).

Linear interpolation is often employed for simplicity [4, 5], but a cosine
interpolation function [6] or other variations such as spline can provide ac-
celeration and deceleration effects at the beginning and end of an animation.
When four key frames are involved, rather than two, bilinear interpolation
generates a greater variety of facial expressions than linear interpolation [7].
Bilinear interpolation, when combined with simultaneous image morphing,
creates a wide range of facial expression changes [8].

Interpolated images are generated by varying the parameters of the in-
terpolation functions. Geometric interpolation directly updates the 2D or 3D
positions of the face mesh vertices, while parameter interpolation controls
functions that indirectly move the vertices. For example, Sera et al. [9] per-
form a linear interpolation of the spring muscle force parameters, rather than
the positions of the vertices, to achieve mouth animation.
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Fig. 1.1. Linear Interpolation is performed on blend shapes. Left: Neutral pose,
Right: ”A” mouth shape, Middle: Interpolated shape.

Some recent efforts attempt to improve the efficiency of producing muscle
actuation based blend shape animations [10, 11]. The Pose Space Deformation
(PSD) method presented by Lewis et al. [12] provides a general framework for
example-based interpolation which can be used for blendshape facial anima-
tions. In their work, the deformation of a surface (face) is treated as a function
of some set of abstract parameters, such as {smile, raise-eyebrow,...}, and new
surface is generated by scattered data interpolations.

Although interpolations are fast and they easily generate primitive facial
animations, their ability to create a wide range of realistic facial configurations
is restricted. Combinations of independent face motions are difficult to pro-
duce and non-orthogonal blend shapes often interfere each other, which cause
animators have to go back and forth to re-adjust the weights of blend shapes.
Lewis et al. [13] presented a user interface technique to automatically reduce
blendshape interferences. Deng et al. [3] presented an automatic technique
for mapping sparse facial motion capture data to pre-designed 3D blendshape
face models by learning a radial basis functions based regression.

3 Parameterizations

Parameterization techniques for facial animation [14, 7, 15, 16] overcome some
of the limitations and restrictions of simple interpolations. Ideal parameteriza-
tions specify any possible face and expression by a combination of independent
parameter values [2]. Unlike interpolation techniques, parameterizations allow
explicit control of specific facial configurations. Combinations of parameters
provide a large range of facial expressions with relatively low computational
costs.

As indicated in [17], there is no systematic way to arbitrate between two
conflicting parameters to blend expressions that effect the same vertices. Thus,
parameterization produces unnatural human expressions or configurations
when a conflict between parameters occurs. For this reason, parameterizations
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are designed to only affect specific facial regions. However, it often introduces
noticeable motion boundaries. Another limitation of parameterization is that
the choice of the parameter set depends on the facial mesh topology and,
therefore, a complete generic parameterization is not possible. Furthermore,
tedious manual tuning is required to set parameter values. The limitations of
parameterization led to the development of diverse techniques such as mor-
phing between images and geometry, physically faithful/pseudo muscle based
animation, and performance driven animation.

4 Facial Action Coding System

The Facial Action Coding System (FACS) is a description of the move-
ments of the facial muscles and jaw/tongue derived from an analysis of facial
anatomy [18]. FACS includes forty four basic action units (AUs). Combina-
tions of independent action units generate facial expressions. For example,
combining the AU1 (Inner brow raiser), AU4 (Brow Raiser), AU15 (Lip Cor-
ner Depressor), and AU23 (Lip Tightener) creates a sad expression. A table
of the sample action units and the basic expressions generated by the actions
units are presented in Tables 1.1 and 1.2.

AU FACS Name AU FACS Name AU FACS Name

1 Inner Brow Raiser 12 Lid Corner Puller 2 Outer Brow Raiser

14 Dimpler 4 Brow Lower 15 Lip Corner Depressor

5 Upper Lid Raiser 16 Lower Lip Depressor 6 Check Raiser

17 Chin Raiser 9 Nose Wrinkler 20 Lip Stretcher

23 Lip Tightener 10 Upper Lid Raiser 26 Jaw Drop

Table 1.1. Sample single facial action units.

Basic Expressions Involved Action Units

Surprise AU1, 2, 5, 15, 16, 20, 26

Fear AU1, 2, 4, 5, 15, 20, 26

Anger AU2, 4, 7, 9, 10, 20, 26

Happiness AU1, 6, 12, 14

Sadness AU1, 4, 15, 23

Table 1.2. Example sets of action units for basic expressions.

For its simplicity, FACS is widely utilized with muscle or simulated
(pseudo) muscle based approaches. Animation methods using muscle models
overcome the limitation of interpolation and provide a wide variety of facial
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expressions. Physical muscle modeling mathematically describes the proper-
ties and the behavior of human skin, bone, and muscle systems. In contrast,
pseudo muscle models mimic the dynamics of human tissue with heuristic geo-
metric deformations. Despite its popularity, there are some drawbacks of using
FACS [19]. First, AUs are purely local patterns while actual facial motion is
rarely completely localized. Second, FACS offers spatial motion descriptions
but not temporal components. In the temporal domain, co-articulation effects
are lost in the FACS system.

5 Deformation Based Approaches

Direct deformation defined on the facial mesh surface often produces quality
animation. It ignores underlying facial anatomy or true muscle structures.
Instead, the focus is on creating various facial expressions by the manipulation
of thin-shell mesh. This category includes morphing between different models
and simulated pseudo muscles in the form of splines [20, 21, 22], wires [23], or
free form deformations [24, 25].

5.1 2D and 3D Morphing

Morphing effects a metamorphosis between two target images or models. A
2D image morph consists of a warp between corresponding points in the tar-
get images and a simultaneous cross dissolve3. Typically, the correspondences
are manually selected to suit the needs of the application. Morphs between
carefully acquired and corresponded images produce very realistic facial an-
imations. Beier and Neely [26] demonstrated 2D morphing between two im-
ages with manually specified corresponding features (line segments). The warp
function is based upon a field of influence surrounding the corresponding fea-
tures. Realism, with this approach, requires extensive manual interaction for
color balancing, correspondence selection, and tuning of the warp and dissolve
parameters. Variations in the target image viewpoints or features complicate
the selection of correspondences. Realistic head motions are difficult to synthe-
size since target features become occluded or revealed during the animation.

To overcome the limitations of 2D morphs, Pighin et al. [27] combine
2D morphing with 3D transformations of a geometric model. They animate
key facial expressions with 3D geometric interpolation while image morphing
is performed between corresponding texture maps. This approach achieves
viewpoint independent realism, however, animations are still limited to inter-
polations between pre-defined key facial expressions.

The 2D and 3D morphing methods can produce quality facial expressions,
but they share similar limitations with the interpolation approaches. Select-
ing corresponding points in target images is manually intensive, dependent

3 In cross dissolving, one image is faded out while another is simultaneously faded
in.
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on viewpoint, and not generalizable to different faces. Also, the animation
viewpoint is constrained to approximately that of the target images.

5.2 Free From Deformation

Free form deformation (FFD) deforms volumetric objects by manipulating
control points arranged in a three-dimensional cubic lattice [28]. Conceptu-
ally, a flexible object is embedded in an imaginary, clear, and flexible control
box containing a 3D grid of control points. As the control box is squashed,
bent, or twisted into arbitrary shapes, the embedded object deforms accord-
ingly (Fig. 1.2). The basis for the control points is a trivariate tensor product
Bernstein polynomial. FFDs can deform many types of surface primitives, in-
cluding polygons; quadric, parametric, and implicit surfaces; and solid models.

Fig. 1.2. Free form deformation. Controlling box and embedded object are shown.
When controlling box is deformed by manipulating control points, so is embedded
object.

Extended free form deformation (EFFD) [24] allows the extension of the
control point lattice into a cylindrical structure. A cylindrical lattice provides
additional flexibility for shape deformation compared to regular cubic lattices.
Rational free form deformation (RFFD) incorporates weight factors for each
control point, adding another degree of freedom in specifying deformations.
Hence, deformations are possible by changing the weight factors instead of
changing the control point positions. When all weights are equal to one, then
RFFD becomes a FFD. A main advantage of using FFD (EFFD, RFFD) to
abstract deformation control from that of the actual surface description is that
the transition of form is no longer dependent on the specifics of the surface
itself [29].

Displacing a control point is analogous to actuating a physically modeled
muscle. Compared to Waters’ physically based model [30], manipulating the
positions or the weights of the control points is more intuitive and simpler than
manipulating muscle vectors with delineated zone of influence. However, FFD
(EFFD, RFFD) does not provide a precise simulation of the actual muscle
and skin behavior. Furthermore, since FFD (EFFD, RFFD) is based upon
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surface deformation, volumetric changes occurring in the physical muscle is
not accounted for.

5.3 Spline Pseudo Muscles

Albeit polygonal models of the face are widely used, they often fail to ade-
quately approximate the smoothness or flexibility of the human face. Fixed
polygonal models do not deform smoothly in arbitrary regions, and planar
vertices can not be twisted into curved surfaces without subdivision.

An ideal facial model has a surface representation that supports smooth
and flexible deformations. Spline muscle models offer a plausible solution.
Splines are usually up to C2 continuous, hence a surface patch is guaranteed
to be smooth, and they allow localized deformation on the surface. Further-
more, affine transformations are defined by the transformation of a small set
of control points instead of all the vertices of the mesh reducing the compu-
tational complexity.

Some spline-based animation can be found in [20, 21]. Pixar used bicubic
Catmull-Rom spline 4 patches to model Billy, the baby in animation Tin Toy,
and used a variant of Catmull-Clark [31] subdivision surfaces to model Geri, a
human character in short film Geri’s game. This technique is mainly adapted
to model sharp creases on a surface or discontinuities between surfaces [32]. For
a detailed description of Catmull-Rom splines and Catmull-Clark subdivision
surfaces, refer to [33, 31]. Eisert and Girod [34] used triangular B-splines to
overcome the drawback that conventional B-splines do not refine curved areas
locally since they are defined on a rectangular topology.

A hierarchical spline model reduces the number of unnecessary control
points. Wang et al. [22] showed a system that integrated hierarchical spline
models with simulated muscles based on local surface deformations. Bicu-
bic B-splines offer both smoothness and flexibility, which are hard to achieve
with conventional polygonal models. The drawback of using naive B-splines
for complex surfaces becomes clear, however, when a deformation is required
to be finer than the patch resolution. To produce finer patch resolution, an en-
tire row or column of the surface is subdivided. Thus, more detail (and control
points) is added where none are needed. In contrast, hierarchical splines pro-
vide the local refinements of B-spline surfaces and new patches are only added
within a specified region. Hierarchical B-splines are an economical and com-
pact way to represent a spline surface and achieve high rendering speed. Mus-
cles coupled with hierarchical spline surfaces are capable of creating bulging
skin surfaces and a variety of facial expressions.

4 A distinguishing property of Catmull-Rom splines is that the piecewise cubic
polynomial segments pass through all the control points except the first and
last when used for interpolation. Another is that the convex hull property is not
observed in Catmull-Rom spline.
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6 Physics Based Muscle Modeling

Physics-based muscle models fall into three categories: mass spring systems,
vector representations, and layered spring meshes. Mass-spring methods prop-
agate muscle forces in an elastic spring mesh that models skin deformation.
The vector approach deforms a facial mesh using motion fields in delineated
regions of influence. A layered spring mesh extends a mass spring structure
into three connected mesh layers to model anatomical facial behavior more
faithfully.

6.1 Spring Mesh Muscle

The work by Platt and Badler [35] is a forerunner of the research focused
on muscle modeling and the structure of the human face. Forces applied to
elastic meshes through muscle arcs generate various facial expressions. Platt’s
later work [36] presents a facial model with muscles represented as collections
of functional blocks in defined regions of the facial structure. Platt’s model
consists of thirty eight regional muscle blocks interconnected by a spring net-
work. Action units are created by applying muscle forces to deform the spring
network. There are some recent developments using mass-spring muscles for
facial animation [37, 38]. For example, Kahler et al. [38] present a convenient
editing tool to interactively specify mass-spring muscles into 3D face geometry.

6.2 Vector Muscle

A very successful muscle model was proposed by Waters [30]. A delineated
deformation field models the action of muscles upon skin. A muscle definition
includes the vector field direction, an origin, and an insertion point (the left
panel of Figure 1.3). The field extent is defined by cosine functions and fall off
factors that produce a cone shape when visualized as a height field. Waters also
models the mouth sphincter muscles as a simplified parametric ellipsoid. The
sphincter muscle contracts around the center of the ellipsoid and is primarily
responsible for the deformation of the mouth region. Waters animates human
emotions such as anger, fear, surprise, disgust, joy, and happiness using vector
based linear and orbicularis oris muscles utilizing the FACS. The right panel
of Figure 1.3 shows the Waters’ muscles embedded in a facial mesh.

The positioning of vector muscles into anatomically correct positions can
be a daunting task. The process involves manual trial and error with no guar-
antee of efficient or optimal placement. Incorrect placement results in unnat-
ural or undesirable animation of the mesh. Nevertheless, the vector muscle
model is widely used because of its compact representation and independence
of the facial mesh structure. An example of vector muscles is seen in Billy, the
baby in the movie Tin Toy, who has forty seven Waters’ muscles on his face.
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Fig. 1.3. The left panel shows the zone of influence of Waters’ linear muscle model.
The right panel shows muscle placement in Waters’s work [30].

6.3 Layered Spring Mesh Muscles

Terzopoulos and Waters [39] proposed a facial model that models detailed
anatomical structure and dynamics of the human face. Their three-layers of de-
formable mesh correspond to skin, fatty tissue, and muscle tied to bone. Elas-
tic spring elements connect each mesh node and each layer. Muscle forces prop-
agate through the mesh systems to create animation. This model is faithful
to facial anatomy. Simulating volumetric deformations with three-dimensional
lattices, however, requires extensive computation. A simplified mesh system
reduces the computation time while still maintaining similar quality [40].

Lee et al. [41, 42] presented face models composed of physics-based syn-
thetic skin and muscle layers based on earlier work [39]. The face model con-
sists of three components: a biological tissue layer with nonlinear deformation
properties, a muscle layer knit together under the skin, and an impenetrable
skull structure beneath the muscle layer. The synthetic tissue is modeled as
triangular prism elements that are divided into the epidermal surface, the fas-
cia surface, and the skull surface. Spring elements connecting the epidermal
and fascia layers simulate skin elasticity. Spring elements that effect muscle
forces connect the fascia and skull layers. The model achieves better fidelity.
Tremendous computation is required, however, and extensive tuning is needed
to model a specific face or characteristic.

7 3D Face Modeling

An important problem in facial animation is to model a specific person, i.e.,
modeling the 3D geometry of an individual face. A range scanner, digitizer
probe, or stereo disparity can measure three-dimensional coordinates. The
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models obtained by those processes are often poorly suited for facial anima-
tion. Information about the facial structures is missing; measurement noise
produces distracting artifacts; and model vertices are poorly distributed. Also,
many measurement methods produce incomplete models, lacking hair, ears,
eyes, etc. Therefore, post processing on the measured data is often necessary.

7.1 Person Specific Model Creation

An approach to person-specific modeling is to painstakingly prepare a generic
animation mesh with all the necessary structure and animation information.
This generic model is fitted or deformed to a measured geometric mesh of a
specific person to create a personalized animation model. The geometric fit
also facilitates the transfer of texture if it is captured with the measured mesh.
If the generic model has fewer polygons than the measured mesh, decimation
is implicit in the fitting process.

Person-specific modeling and fitting processes use various approaches such
as scattered data interpolations [43, 5, 44] and projections onto the cylindrical
coordinates incorporated with a positive Laplacian field function [42]. Some
methods attempt an automated fitting process, but most require manual in-
tervention.

Radial basis functions are capable of closely approximate or interpolate
smooth hypersurfaces [45] such as human facial shapes. Some approaches
morph a generic mesh into specific shapes with scattered data interpolation
techniques based on radial basis functions. The advantages of this approach
are as follows. First, the morph does not require equal numbers of nodes in
the involved meshes since missing points are interpolated [43]. Second, math-
ematical support ensures that a morphed mesh approaches the target mesh,
if appropriate correspondences are selected [45, 46].

A typical process of 3D volume morphing is as follows. First, biologically
meaningful landmark points are manually selected around the eyes, nose, lips,
and perimeters of both face models. Second, the landmark points define the
coefficients of the kernel of the radial basis function used to morph the vol-
ume. Finally, points in the generic mesh are interpolated using the coefficients
computed from the landmark points. The success of the morphing depends
strongly on the selection of the landmark points [43, 27].

Instead of morphing a face model, a morphable model exploits a pre-
constructed set of face database to create a person specific model [47]. First,
a scanning process collects a large number of faces to compile a database.
This example 3D face models spans the space of any possible human faces in
terms of geometry and texture. New faces and expressions can be represented
as a linear combination of the examples. Typically, an image of a new person
is provided to the system, then, the system outputs a 3D model of the person
that closely matches the image.
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7.2 Anthropometry

The generation of individual models using anthropometry 5 attempts to pro-
duce facial variations where absolute appearance is not important. Kuo et
al. [48] proposes a method to synthesize a lateral face from one 2D gray-level
image of a frontal face. A database is first constructed, containing facial pa-
rameters measured according to anthropomorphic definitions. This database
serves as a priori knowledge. The lateral facial parameters are estimated from
frontal facial parameters by using minimum mean square error (MMSE) es-
timation rules applied to the database. Specifically, the depth of one lateral
facial parameter is determined by the linear combination of several frontal
facial parameters. The 3D generic facial model is then adapted according to
both the frontal plane coordinates extracted from the image and their esti-
mated depths. Finally, the lateral face is synthesized from the feature data
and texture-mapped.

DeCarlo et al. [49] constructs various facial models purely based on an-
thropometry without assistance from images. This system constructs a new
face model in two steps. The first step generates a random set of measure-
ments that characterize the face. The form and values of these measurements
are computed according to face anthropometry (Figure 1.4). The second step
constructs the best surface that satisfies the geometric constraints using a
variational constrained optimization technique [50, 51]. In this technique, one
imposes a variety of constraints on the surface and then tries to create a
smooth and fair surface while minimizing the deviation from a specified rest
shape, subject to the constrains. For a face modeling, anthropometric mea-
surements are the constraints, and the remainder of the face is determined by
minimizing the deviation from the given surface objective function. Variational
modeling enables the system to capture the shape similarities of faces, while
allowing anthropometric differences. Although anthropometry has potential
for rapidly generating plausible facial geometric variations, the approach does
not model realistic variations in color, wrinkling, expressions, or hair.

8 Performance Driven Facial Animation

The difficulties in controlling facial animations led to the performance driven
approach where tracked human actors drive the animation. Real time video
processing allows interactive animations where the actors observe the anima-
tions they create with their motions and expressions. Accurate tracking of
feature points or edges is important to maintain a consistent and quality of
animation. Often the tracked 2D or 3D feature motions are filtered or trans-
formed to generate the motion data needed for driving a specific animation
system. Motion data can be used to directly generate facial animation [19]

5 the science dedicated to the measurements of the human face
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Fig. 1.4. Some of the anthropometric landmarks on the face. The selected land-
marks are widely used as measurements for describing the human face.

or to infer AUs of FACS in generating facial expressions. Figure 1.5 shows
animation driven from a real time feature tracking system.

Fig. 1.5. Real time tracking is performed without markups on the face using Eye-
matic Inc.’s face tracking system. Real time animation of the synthesized avatar is
achieved based on the 11 tracked features. Here (a) shows the initial tracking of the
face features, (b) shows features are tracked in real time while the subject is moving,
and (c) shows an avatar mimics the behavior of the subject.

8.1 Snakes and Markings

Snakes, or deformable minimum-energy curves, are used to track intentionally
marked facial features [52]. The recognition of facial features with snakes is
primarily based on color samples and edge detection. Many systems couple
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tracked snakes to underlying muscles mechanisms to drive facial animation [53,
54, 39, 55, 56]. Muscle contraction parameters are estimated from the tracked
facial displacements in video sequences.

Tracking errors accumulate over long image sequences. Consequently, a
snake may lose the contour it is attempting to track. In [57], tracking from
frame to frame is done for the features that are relatively easy to track. A
reliability test enables a reinitialization of a snake when error accumulations
occur.

8.2 Optical Flow Tracking

Colored markers painted on the face or lips [58, 59, 60, 61, 62, 63, 64, 9] are
extensively used to aid in tracking facial expressions or recognizing speech
from video sequences. However, markings on the face are intrusive. Also, re-
liance on markings restricts the scope of acquired geometric information to the
marked features. Optical flow [65] and spatio-temporal normalized correlation
measurements [66] perform natural feature tracking and therefore obviate the
need for intentional markings on the face [67, 19]. Chai et al. [68] propose a
data-driven technique to translate noisy, low-quality 2D tracking signals from
video to high-quality 3D facial animations based on a pre-processed facial mo-
tion database. One limitation of this approach is that a pre-processed facial
motion database is required, and its performance may depend on the match
between pre-recorded persons in the database and target face models. Zhang
et al. [69] propose a space-time stereo tracking algorithm to build 3D face
models from video sequences that maintain point correspondences across the
entire sequence without using any marker.

8.3 Facial Motion Capture Data

More recent trend to produce quality animation is to use 3D motion capture
data. Motion capture data have successfully been used in recent movies such
as Polar Express and Monster House. Typically, motion data is captured
and filtered prior to the animation. An array of high performance cameras
is utilized to reconstruct the 3D maker locations on the face. Although this
optical system is difficult to set up and expensive, the reconstructed data
provide accurate timing and motion information. Once the data is available,
facial animation can be created by employing underlying muscle structure [70]
or Blendshapes [71, 72, 3].

9 MPEG-4 Facial Animation

Due to its increased applications, facial animation was adopted into the
MPEG-4 standard, an object-based multimedia compression standard [73].
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MPEG-4 specifies and animates 3D face models by defining Face Definition
Parameters (FDP) and Facial Animation Parameters (FAP). FDPs enclose
information for constructing specific 3D face geometry, and FAPs encode mo-
tion parameters of key feature points on the face over time. Face Animation
Parameter Units (FAPU) that scale FAPs for fitting any face model, are de-
fined as the fractions of key facial features, such as the distance between the
two eyes.

In MPEG-4 facial animation standard, total 84 Feature Points (FPs) are
specified. Figure 1.6 approximately illustrates part of the MPEG-4 feature
points in a front face. After excluding the feature points that are not affected
by FAPs, 68 FAPs are categorized into groups (Table 1.3). Most of FAP
groups are low-level parameters since they precisely specify how much a given
FP should be moved. One FAP group (visemes and expressions) is considered
as high-level parameters, because these parameters are not precisely specified.
For example, textual descriptions are used to describe expressions. As such,
reconstructed facial animation depends on the implementation of individual
MPEG-4 facial animation decoder programs.

Fig. 1.6. Part of facial feature points defined in the MPEG-4 standard. A complete
description of the MPEG-4 feature points can be found in [74].
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Group Number of FAPs

Viseme and expressions 2

Lip, Chin and Jaw 26

Eyes (including pupils and eyelids) 12

Eyebrow 8

Cheeks 4

Tongue 5

Head Movement 3

Nose 4

Ears 4

Table 1.3. FAP groups in MPEG-4.

Previous research efforts on MPEG-4 facial animation were focused on de-
forming 3D face models based on MPEG-4 feature points [75, 76] and building
MPEG-4 facial animation decoder systems [77, 78, 79, 80]. For example, Es-
cher et al. [75] deform a generic face model using a free-form deformation based
approach to generate MPEG-4 facial animations. Kshirsagar et al. [76] propose
an efficient feature-point based face deformation technique given MPEG-4 fea-
ture point inputs. In their approach, the motion of each MPEG-4 feature point
is propagated to neighboring vertices of the face model and the motion of each
vertex (non-feature point) is the summation of these motion propagations.
Various MPEG-4 facial animation decoder systems [77, 78] and frameworks
that are targeted for web and mobile applications [79, 80] are also proposed.
For more details of MPEG-4 facial animation standard, implementations and
applications, please refer to the MPEG-4 facial animation book [81].

10 Visual Speech Animation

Visual speech animation can be regarded as visual motions of the face (es-
pecially the mouth part) when humans are speaking. Synthesizing realistic
visual speech animations corresponding to novel text or pre-recorded acoustic
speech input has been a difficult task for decades, because human languages,
such as English, generally have not only a large vocabulary and a large num-
ber of phonemes (the theoretical representation of an utterance/sound), but
also the phenomena of speech co-articulation that complicates the mappings
between acoustic speech signals (or phonemes) and visual speech motions. In
linguistics literature, speech co-articulation is defined as follows: phonemes
are not pronounced as an independent sequence of sounds, but rather that
the sound of a particular phoneme is affected by adjacent phonemes. Visual
speech co-articulation is analogous.

Previous research efforts in visual speech animation generation can be
roughly classified into two different categories: viseme-driven approaches and
data-driven approaches. Viseme-driven approaches require animators to de-
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sign key mouth shapes for phonemes (termed as visemes) in order to generate
novel speech animations. On the contrary, data-driven approaches do not need
pre-designed key shapes, but generally require a pre-recorded facial motion
database for synthesis purposes.

10.1 Viseme-Driven Approaches

Viseme is defined as a basic visual unit that corresponds to the phoneme
in speech. Viseme-driven approaches typically require animators to design
visemes (key mouth shapes), and then empirical smooth functions [82, 83, 14,
84, 85, 86] or co-articulation rules [87, 88, 89] are used to synthesize novel
speech animations.

Given novel speech sound track and a small number of visemes, J.P.
Lewis [83] proposes an efficient lip-sync technique based on a linear prediction
model. Cohen and Massaro [14] propose the Cohen-Massaro co-articulation
model for generating speech animations. In their approach, a viseme shape
is defined via dominance functions that are defined in terms of each facial
measurement, such as such as lips, tongue tip, etc. And the weighted sum
of dominance values determines final mouth shapes. Figure 1.7 schematically
illustrates the essential idea of the Cohen-Massaro Model. Its recent exten-
sions [84, 85, 86, 89] further improved the Cohen-Massaro co-articulation
model. For example, Cosi et al. [85] added a temporal resistance function and
a shape function for more general cases, such as fast/slow speaking rates. The
approach proposed by Goff and Benôıt [84] calculates the model parameter
values of the Cohen-Massaro model by analyzing parameter trajectories mea-
sured from a French speaker. The approach proposed by King and Parent [86]
extends the Cohen-Massaro model by using viseme curves to replace a single
viseme target. Bevacqua and Pelachaud [89] propose an expressive qualifier
modeled from recorded speech motion data to make expressive speech anima-
tions.

Rule-based co-articulation models [87, 88] leave some visemes undefined
based on their co-articulation importance and phoneme contexts. These ap-
proaches are based on an important observation that phonemes have different
sensitivity to their phoneme context: some phonemes (and their visemes) are
strongly affected by neighboring phonemes (and visemes), while some oth-
ers are less affected. Deng et al. [90, 91, 92] propose a novel motion capture
mining technique that “learns” speech co-articulation models for diphones (a
phoneme pair) and triphones from the pre-recorded facial motion data, and
then generates novel speech animations by blending pre-designed visemes (key
mouth shapes) using the learned co-articulation models.

Animation realism generated by the above viseme-driven approaches largely
depends on the hand-crafted smoothing (co-articulation) functions and a
hidden assumption that a viseme can be represented by one or several
pre-designed key shapes. However, in practice, constructing accurate co-
articulation functions and phoneme-viseme mappings requires challenging and
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Fig. 1.7. Schematic illustration of the Cohen-Massaro co-articulation model [14].
Dominance functions of three consecutive phonemes are plotted, and weighted sum
of dominance curves is plotted as a blue curve.

painstaking manual work. As a new trend for speech animation generation,
data-driven approaches were proposed to alleviate the painstaking manual
work.

10.2 Data-Driven Approaches

Data-driven approaches synthesize new speech animations by concatenating
pre-recorded facial motion data or sampling from statistical models learned
from the data. Their general pipeline is as follows. First, facial motion data (2D
facial images or 3D facial motion capture data) are pre-recorded. Second, there
are two different ways to deal with the constructed facial motion database:
either statistical models for facial motion control are trained from the data
(learning-based approaches), or the facial motion database is further organized
and processed (sample-based approaches). Finally, given novel sound track or
text input, corresponding visual speech animations are generated by sampling
from the trained statistical models, or recombining motion frames optimally
chosen from the facial motion database. Figure 1.8 shows a schematic view of
the data-driven speech animation approaches.

The data-driven approaches typically generate realistic speech animation
results, but it is hard to predict how much motion data are enough to train
statistical models or construct a balanced facial motion database. In other
words, the connection from the amount of pre-recorded facial motion data to
the realism of synthesized speech animations is not clear. Furthermore, these
approaches often do not provide intuitive process controls for the animators.
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Fig. 1.8. Sketched general pipeline of data-driven speech animation generation
approaches. The sample-based approaches go with the blue path, and the learning-
based approaches go with the red path.

Sample-Based

Bregler et al. [93] present the “video rewrite” method for synthesizing 2D
talking faces given novel speech input, based on the collected “triphone video
segments”. Instead of using ad hoc co-articulation models and ignoring dy-
namics factors in speech, this approach models the co-articulation effect with
“triphone video segments”, but it is not generative (i.e. the co-articulation
cannot be applied to other faces without retraining). The work of [94, 95]
further extends “the triphone combination idea” [93] to longer phoneme seg-
ments. For example, Cao et al. [95, 96] propose a greedy search algorithm
to look for longer pre-recorded facial motion sequences (≥ 3 phonemes) in
the database. The work of [97, 98, 99, 100] searches for the optimal combi-
nation of pre-recorded motion frame sequences by introducing various cost
functions, based on dynamic programming based search algorithms. In the
work of [100], a phoneme-Isomap interface is introduced to provide high-level
controls for the animators, and phoneme-level emotion specifiers are enforced
as search constraints.

Instead of constructing phoneme segment database [93, 97, 94, 95, 98, 99,
100, 101], Kshirsagar and Thalmann [102] propose a syllable motion based
approach to synthesize novel speech animations. In their approach, captured
facial motions are segmented into syllable motions, and then new speech an-
imations are achieved by concatenating syllable motion segments optimally
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chosen from the syllable motion database. Sifakis et al. [103] propose a physics-
based approach to generate novel speech animations by first computing muscle
activation signals for each phoneme (termed as physemes) enclosed in the pre-
recorded facial motion data and then concatenating corresponding physemes
given novel speech input.

Learning-Based

Learning-based approaches model speech co-articulations as implicit functions
in statistical models. Brand [104] learns a HMM-based facial control model
by an entropy minimization learning algorithm from voice and video training
data and then effectively synthesizes full facial motions for novel audio track.
This approach models co-articulations, using the Viterbi algorithm through
vocal HMMs to search for most likely facial state sequence that is used for
predicting facial configuration sequences. Ezzat et al. [105] learn a multidi-
mensional morphable model from a recorded face video database that requires
a limited set of mouth image prototypes and use the magnitude of diagonal
covariance matrices of phoneme clusters to represent co-articulation effects:
the larger covariance of a phoneme cluster means this phoneme has a smaller
co-articulation, and vice versa.

Blanz et al. [106] reanimate 2D faces in images and video by reconstructing
3D face model using the morphable face model framework [47] and learning
an expression and viseme space from scanned 3D faces. This approach ad-
dresses both speech and expressions. Deng et al. [91, 92] proposed an expres-
sive speech animation system that learn speech co-articulation models and
expression eigen-spaces from recorded facial motion capture data. Some other
approaches [107, 108] were also proposed for generating expressive speech an-
imations.

Generally, these approaches construct economical and compact represen-
tations for human facial motions and synthesize human-like facial motions.
However, how much data are minimally required to guarantee satisfied syn-
thesis results is an unsolved issue in these approaches, and creating explicit
correlations between training data and the realism of final animations would
be a critical need. Furthermore, model and feature selections residing in many
machine learning algorithms are still far away from being solved.

11 Facial Animation Editing

Editing facial animations by posing key faces is a widely-used practice. In-
stead of moving individual vertex of 3D face geometry, various deformation
approaches (Section 5) and the blendshape methods (Section 2) can be re-
garded to simultaneously move and edit a group of relevant vertices, which
greatly improve the efficiency of facial animation editing. However, different
facial regions are essentially correlated each other, and the above deformation
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approaches typically operate a local facial region at one time. The anima-
tors need to switch editing operations on different facial regions in order to
sculpt 3D realistic faces with fine details, which creates a large amount of
additional work for the animators. In addition, even for skilled animators, it
is difficult to judge which facial pose (configuration) is closer to a real human
face. Some recent work in facial animation editing [109, 72, 13, 110, 111, 112]
were proposed to address this issue.

The ICA-based facial motion editing technique [109] applies Independent
Component Analysis (ICA) onto pre-recorded expressive facial motion capture
data and interprets certain ICA components as expression and speech-related
components. Further editing operations, e.g. scaling, are performed on these
ICA components in their approach. Chang and Jenkins [112] propose a 2D
sketch interface for posing 3D faces. In their work, users can intuitively draw
2D strokes in 2D face space that are used to search for the optimal pose of
the face.

Editing a local facial region while preserving naturalness of the whole face
is another intriguing idea. The geometry-driven editing technique [110] gen-
erates expression details on 2D face images by constructing a PCA-based
hierarchical face representation from a selected number of training 2D face
images. When users move one or several points on the 2D face image, the
movements of other facial control points are automatically computed by a
motion propagation algorithm. Based on a blendshape representation for 3D
face models, Joshi et al. [72] propose an interactive tool to edit 3D face geom-
etry by learning controls through a physically-motivated face segmentation.
A rendering algorithm for preserving visual realism in this editing was also
proposed in their approach.

Besides the above approaches, the morphable face model framework [47]
and the multilinear face model [111] can be used for facial animation editing:
once these statistical models are constructed from training face data, users can
manipulate high-level attributes of the face, such as gender and expression,
to achieve the purpose of facial animation editing.

12 Facial Animation Transferring

Automatically transferring facial motions from an existing (source) model to
a new (target) model can significantly save painstaking and model-specific
animation tuning for the new face model. The source facial motions can have
various formats, including 2D video faces, 3D facial motion capture data, and
animated face meshes, while the target models typically are a static 3D face
mesh or a blendshape face model. In this regard, performance driven facial
animation described in Section 8 can be conceptually regarded as one specific
way of transferring facial motions from 2D video faces to 3D face models. In
this section, we will review other facial animation transferring techniques.
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Transferring facial motions between two 3D face meshes can be performed
through geometric deformations. Noh and Neumann [113] propose an “expres-
sion cloning” technique to transfer vertex displacements from a source 3D face
model to target 3D face models that may have different geometric proportions
and mesh structure. Its basic idea is to construct vertex motion mappings be-
tween models through the Radial Basis Functions (RBF) morphing. Sumner
and Popović [114] propose a general framework that automatically transfer
geometric deformations between two triangle meshes, which can be directly
applied to retarget facial motions from one source face mesh to a target face
mesh. Both approaches need a number of initial face landmark correspon-
dences through either heuristic rules [113] or manually specifying.

A number of approaches were proposed to transfer source facial motions to
blendshape face models [70, 115, 98, 11, 3] due to the popularized use of blend-
shape methods in industry practice. Choe and Ko [70] transfer tracked facial
motions to target blendshape face models composed of hand-generated muscle
actuation base, by iteratively adjusting muscle actuation base and analyzed
weights through an optimization procedure. The work of [115, 98] transfers fa-
cial animations using example-based approaches. Essentially these approaches
require animators to sculpt proper blendshape face models based on a set of
key facial poses, delicately chosen from source facial animation sequences.
Hence, it is difficult to apply these techniques to pre-designed blendshape
models without considerable efforts. Sifakis et al. [11] first create an anatomi-
cally accurate face model composed of facial musculature, passive tissue, and
underlying skeleton structure, and then use nonlinear finite element methods
to determine accurate muscle actuations from the motions of sparse facial
markers. Anatomically accurate 3D face models are needed for this approach,
which is another challenging task itself in computer animation. Deng et al. [3]
propose an automatic technique to directly map 3D facial motion capture
data to pre-designed blendshape face models. In their approach, Radial Basis
Functions (RBF) networks are trained to map a new motion capture frame to
its corresponding blendshape weights, based on chosen training pairs between
mocap frames and blendshape weights.

The above approaches trustily “copy” facial motions between models, but
they provide little transformation function, for example, change affective mode
during transferring. Bilinear models and multilinear models were proposed
to transform facial motions [116, 117, 111]. Chuang and Bregler [116, 117]
learn a facial expression mapping/transformation function from training video
footage using bilinear models [118], and then this learned mapping is used
to transform input video of neutral talking to expressive talking. Vlasic et
al. [111] propose a framework to transfer facial motion in video to other 2D
or 3D faces by learning statistical multilinear models from scanned 3D face
meshes. In their work, the learned multilinear models are controlled via in-
tuitive attribute parameters, such as identity and expression. Varying one
attribute parameter (e.g. identity) while keeping other attributes intact, can
transfer the facial motions from one model to another. Both approaches inter-
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pret expressions as dynamic processes, but the expressive face frames retain
the same timing as the original neutral speech, which does not seem plausible
in all cases.

13 Facial Gesture Generation

Facial gesture is typically interpreted as a gesture executed with the facial
muscles and facial movement, enclosing various visual components, such as
facial expressions, head movement, etc. In this section we focus on reviewing
previous research efforts in eye motion synthesis and head movement gener-
ation. As for generating facial expressions on virtual characters, refer to the
state of the art report written by Vinayagamoorthy et al. [119].

As “windows to the soul”, the eyes are particularly scrutinized and subtle,
since eye gaze is one of the strongest cues to the mental state of human beings
when someone is talking, they look to our eyes to judge our interest and
attentiveness, and we look into their eyes to signal our intent to talk. Chopra-
Khullar et al. [120] propose a framework for computing gestures including
eye gaze and head motions of virtual agents in dynamic environments, given
high-level scripts. Vertegaal et al. [121, 122] studied whether eye gaze direction
clues can be used as a reliable signal for determining who is talking to whom
in multi-party conversations. Lee et al. [123] treat “textural” aspects of gaze
movement using statistical approaches, and demonstrated the necessity of
the gaze details for achieving realism and conveying an appropriate mental
state. In their approach, signals from an eye tracker are analyzed to produce a
statistical model of eye saccades. However, only first-order statistics are used,
and gaze-eyelid coupling and vergence are not considered in their work. Deng
et al. [124, 125] propose a texture synthesis based technique to simultaneously
synthesize realistic eye gaze and blink motion, accounting for any possible
correlations between the two.

Natural head motion is an indispensable part of realistic facial anima-
tion and engaging human computer interface. A number of approaches were
proposed to generate head motions for talking avatars [128, 129, 130, 131,
132, 133, 126, 127]. Rule-based approaches [128, 129] generate head motions
from labeled text by pre-defined rules, but their focus was only the “nod-
ding”. Graf et al. [130] estimated the conditional probability distribution of
major head movements (e.g. nodding) given the occurrences of pitch accents,
based on their collected head motion data. Chuang and Bregler [132] gener-
ate head motions corresponding to novel acoustic speech input, by combin-
ing best-matched recorded head motion segments in the constructed pitch-
indexed database. Deng et al. [133] synthesize appropriate head motions with
keyframing controls, where a constrained dynamic programming algorithm
was used to generate an optimal head motion sequence that maximally sat-
isfies both acoustic speech and key frame constraints (e.g. specified key head
poses). Busso et al. [126] presented a Hidden Markov Models (HMMs) based
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Fig. 1.9. Schematic overview of the HMM-based expressive head motion synthesis
framework [126, 127].

framework to generate natural head motions directly from acoustic prosodic
features. This framework was further extended to generate expressive head
motions [127]. Figure 1.9 shows a schematic overview of the HMM-based head
motion synthesis framework [127].

14 Summary

We surveyed various computer facial animation techniques and classified them
into the following categories: blendshape method (shape interpolation), pa-
rameterizations, Facial Action Coding Systems based approaches, deforma-
tion based approaches, physics based muscle modeling, 3D face modeling,
performance driven facial animation, MPEG-4 facial animation, visual speech
animation, facial animation editing, facial animation transferring, and facial
gesture generation. Within each category, we described main ideas of its ap-
proaches and compare their strength and weakness.
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