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Abstract
In this paper, we propose a new data-driven model to simulate the process of lane-changing in traffic simulation. Specifically, we
first extract the features from surrounding vehicles that are relevant to the lane-changing of the subject vehicle. Then, we learn
the lane-changing characteristics from the ground-truth vehicle trajectory data using randomized forest and back-propagation
neural network algorithms. Our method can make the subject vehicle to take account of more gap options on the target lane
to cut in as well as achieve more realistic lane-changing trajectories for the subject vehicle and the follower vehicle. Through
many experiments and comparisons with selected state-of-the-art methods, we demonstrate that our approach can soundly
outperform them in terms of the accuracy and quality of lane-changing simulation. Our model can be flexibly used together
with a variety of existing car-following models to produce natural traffic animations in various virtual environments.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

In recent years traffic simulation has been widely used in urban
planning, training, computer animation, computer games, and vir-
tual reality [SBLM11, SWL11, WSL13, MWDW15]. In particular,
with the increasing popularity of digital earths such as Google
Maps, incorporating realistic traffic simulation into immersive ur-
ban environments has attracted noticeable attention. In terms of
simulating realistic traffic, existing traffic simulation techniques of-
ten fall into two categories: the automatic motion of a vehicle on a
single lane (namely, car-following models) and the natural control
of lane-changing among multiple lanes. These methods often focus
on setting traffic rules or mechanisms to control individual vehi-
cles; however, to date very limited efforts have been attempted on
simulating realistic lane-changing behavior in traffic simulation.

In order to model complex driving behaviors such as natural
lane-changing among multiple lanes, exploiting dynamic context
factors during driving is necessary. For example, drivers typically
need to take many factors into consideration before they commit
lane-changing, including the minimal safety gap, the relative veloc-
ity of new leader vehicle, the relative velocity of new follower vehi-
cle on the target lane, and so on. To date, how these factors would
together affect the lane-changing behavior has been less studied
in traffic simulation research. In this work, we argue that learning
context-adaptive, lane-changing behavior from real-world traffic
datasets is a sound strategy to tackle this issue, because real-world

data implicitly encodes the complex correlations among these fac-
tors, which is advantageous over manually pre-coded rules.

Inspired by the above insight, in this paper, we present a new
data-driven method to model context-adaptive, lane-changing be-
havior in traffic simulation. First, from a pre-collected vehicle tra-
jectory dataset, we extract the features that are most relevant to
lane-changing including its decision-making and execution pro-
cesses. Second, based on the extracted features, we use machine
learning algorithms to model both the lane-changing decision mak-
ing process and the lane-changing execution process. Specifically,
we train a randomized forest model for the lane-changing decision
making process, and train a back-propagation neural network to
estimate the vehicles’ velocities involved in lane-changing. The
velocities of new follower vehicles are also estimated based on
the learned models. We have conducted experiments to quantita-
tively and qualitatively evaluate the effectiveness of our approach,
in particular, how our approach can generate realistic lane-changing
behaviors in various driving environments. Furthermore, through
comparisons with two selected state-of-the-art traffic simulation
methods, we showed our method can soundly outperform them in
terms of the accuracy and quality of lane-changing simulation.

The main contributions of this work are: 1) A new data-driven
framework is designed to model natural lane-changing behavior in
traffic simulation; it can produce more realistic lane-changing sim-
ulation than the state-of-the-art, based on our experiments, and 2)
machine learning algorithms including both the random forests and
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back-propagation neural networks have been effectively adapted to
model the high-level process (decision-making) and low-level pro-
cess (execution process) of lane-changing behavior among multiple
lanes in traffic simulation.

2. Related Work

In this section, we do not intend to comprehensively survey the
developments in this field. Instead, we will only pay more attention
to lane-changing models and existing efforts on applying machine
learning algorithms for traffic simulation.

Generally, there are three types of traffic simulation techniques:
microscopic, mesoscopic, and macroscopic methods. Microscopic
simulation is also called agent-based methods that treats each ve-
hicle as a discrete autonomous agent with pre-defined rules. Many
agent-based methods use car-following rules to generate the behav-
ior of vehicles in “stop-and-go” patterns [Ger55,New61,LCX⇤14].
Another well-known microscopic model is the Intelligent Driver
Model (IDM) pioneered by Treiber et al. [THH00]. In addition,
cellular automata was also applied to agent-based traffic simu-
lation [NS92, TH02]. Mesoscopic methods use Boltzmann-type
mesoscale equations to simulate traffic dynamics [PF60, SH99].
Finally, macroscopic models, also known as continuous methods,
view traffic flow as continuum dynamics like fluid or gas. In
these methods, researchers have used nonlinear scalar conserva-
tion law or other second-order systems of equations derived from
the equations of gas dynamics to describe the regulations of vehi-
cles [LW55,New61,Pay71,Whi11]. In this way, macroscopic mod-
els can deal with collections of vehicles and therefore work quite
efficiently. Recently, simulations mixed of vehicles and pedestrians
have also started to attract increasing attention [CDJ15].

Existing literature on lane-changing simulation is generally fo-
cused on two different aspects: modeling the decision-making pro-
cess of lane-changing (that is, when vehicles should change lanes),
and the execution of lane-changing (that is, how vehicles perform
lane-changing). Hidas [Hid05] classified lane-changing behavior
into free, forced and cooperative lane changes. In his work, lane-
changing is simulated as an instantaneous action, and based on the
minimal space gap, the lane-changing process with uniform accel-
erated motion is modeled as a function of speed. Later, researchers
proposed a general model to derive lane-changing rules for discre-
tionary and mandatory lane-changing for a variety of car-following
models [KTH07]. Shen and Jin [SJ12] described a flexible contin-
uous lane-changing model to safely simulate the driver’s free or
imperative lane-changing behaviors in order to overtake or other
situations based on the work mentioned above. These works were
designed to model the decision-making process for lane-changing,
but they ignored the process of executing lane-changing as well as
the velocities of other potentially involved vehicles. Recently, Se-
wall et al. proposed a hybrid traffic simulation framework, where
the vehicles that attempt to change lanes obey the kinematic con-
straints [SWML10, SBLM11]. In this approach, vehicles are as-
sumed to be traversable without abrupt wheel-steering, and the
velocities of the vehicles are influenced by the curvature deriva-
tive of the lane-changing curve. The above previous approaches
rely on pre-defined lane-changing rules, which ignores the context-
adaptive characteristics of driving. Although these rules can de-

scribe and explain drivers’ behaviors to certain extent, they often
fall short of generating realistic lane-changing simulation due to
the simplicity and inflexibility of such pre-defined rules.

To tackle the limitations of rule-based methods, in recent years
researchers have explored data-driven traffic simulation, that is,
employing machine learning for traffic simulation. For example,
Meng and Weng [MW12] used a classification and regression tree
(CART) approach, one of the most powerful data mining tech-
niques to date, to predict the drivers’ merging behavior in a work
zone merging area. Hou et al. [HES14] applied Bayes classifier and
decision-tree methods to model mandatory lane-changing at lane
drops. Chong et al. [CAM11] proposed an agent-based neural net-
work model to simulate the “stop-and-go" behavior in lanes. Later,
they further developed a rule-based neural network model to sim-
ulate driver behavior in terms of longitudinal and lateral actions in
two driving situations, namely, car-following situation and safety
critical events [CAMH13]. Recently, Chao et al. [CSJ13] proposed
a video-based approach with an offline learning process, in order
to learn the specific driving characteristics of drivers for advanced
traffic control. Despite these encouraging progresses of applying
machine learning for traffic simulation, none of them has been fo-
cused on employing machine learning for generating realistic lane-
changing simulation.

3. Our Method

As illustrated in Fig. 1, our method consists of three main modules:
the offline preprocessing module, lane-changing decision making,
and lane-changing execution. The offline preprocessing step extract
most relevant features from a pre-collected traffic dataset after per-
form necessary data preprocessing. The decision-making module
is designed to infer whether the subject vehicle should do lane-
changing as well as which target lane/position it should change
to. The execution module is designed to compute the detailed tra-
jectories of the involved vehicles in order to accomplish the lane-
changing task.

Decision-making for lane-changing: In terms of the decision-
making for lane-changing, all the existing methods only judge the
condition of the adjacent gap. The subject vehicle will do the lane-
changing only if all of the gaps are sufficient, including the gap
between the subject vehicle and the new leader vehicle, the gap
between the subject vehicle and the new follower vehicle, and the
velocity gaps of all the involved vehicles. Otherwise, the subject
vehicle will keep waiting until all the conditions are met (refer to
Fig. 2(a)). However, under many real-world driving scenarios such
as lane-merging and avoiding obstacles ahead, or drivers simply do
not want to wait longer for lane-changing, vehicles often need to
make prompt decisions on lane-changing.

Besides the adjacent gap on the target lane, our method also con-
siders the backward gap and the forward gap on the target lane at
the same time, and attempts to complete lane-changing if any of
the three gaps allows a safe lane-changing (illustrated in Fig. 2(b)).
Now the question is which of the three gaps a vehicle should choose
for lane-changing at a particular moment. To address this, based
on a number of selected features including all the gaps and the rel-
ative velocities of all the directly involved vehicles, and the chosen
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Figure 1: Pipeline illustration of our data-driven lane-changing model

gaps in real-world lane-changing traffic data, we train a randomized
forest model to transform the gap selection problem into a classi-
fication problem. After the model training, we can automatically
predict the probability of choosing a specific gap (i.e., the adjacent
gap, the backward gap, or the forward gap) for lane-changing given
a new traffic context.

Figure 2: Schematic differences between our method and previous
lane-changing models: (a) the previous methods only focus on the
adjacent gap on the target lane; (b) our method also considers the
forward and backward gaps, besides the adjacent gap.

Execution of lane-changing: At this step, we assume driv-
ing behavior can be conceptually regarded a state-action machine,
where the driver’s action at a specific moment heavily depends
on his/her driving context including vehicle kinematic conditions
and its surrounding environment. The states we consider in our ap-
proach are those features directly observed from traffic environ-
ment such as the vehicle velocity relative to the leader and fol-
lower vehicles on the target lane, and the leader and follower gap
distances. Based on the ground-truth traffic data, we train a back-
propagation neural network (BPNN) to encode the non-linear, com-

plex mapping from the states of the involved vehicles to specific
lane-changing actions.

Note that lane-changing can be typically classified into three
types: free, forced, and cooperative lane-changes [Hid05]. Dif-
ferent from most of previous lane-changing works that were fo-
cused on forced lane-changing, our approach focuses on cooper-
ative lane-changing, that is, simulating cooperative lane-changing
among multiple lanes without collision.

4. Dataset

In this work, the used traffic trajectory data is from the Federal
Highway Administration’s Next Generation Simulation (NGSIM)
dataset [ngs]. Some previous research studies showed that the
NGSIM dataset exhibits certain noise such as random errors and
measurement errors [PBC09, DBC09, KT08]. Therefore, we used
Gaussian smoothing technique to process the accelerations, veloci-
ties, and coordinates of vehicles in the dataset.

Then, we need to select those lane-changing samples involved
with cooperation among vehicles. Specifically, we extract lane-
changing samples based on the following criteria: (i) a lane-
changing starts when a vehicle’ lateral coordinate begins to shift
toward the adjacent target lane direction without oscillations; (ii)
similarly, a lane-changing ends when a vehicle keeps driving on
the target lane without oscillations. Since our work is focused on
the cooperative lane-changing, the vehicles on the main lane and
the adjacent target lane are of particular interest. When we selected
the samples, we also ensured that only the subject vehicle changed
lane and the order of the involved vehicles on the target lane (vehi-
cles B, C, D, E in Fig. 2 (b)) were kept unchanged. Then, we need
to extract the most relevant features for training our lane-changing
model, including the accelerations, velocities, lateral and longitude
coordinates of vehicles. Finally, the selected lane-changing sam-
ples were randomly divided into two groups: 80% for training and
20% for test purpose.
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5. Decision-making for Lane-changing

In this work, we consider the following factors to affect the
decision-making of lane-changing (illustrated in Fig. 3). These fac-
tors are used as input variables to our machine learning model.

Figure 3: Schematic illustration of the input variables used in the
decision-making process of lane-changing in our approach

• DAB (or DAC, DAD, DAE ): The distance gap between the vehicle
B (or C, D, E) on the target lane and the subject vehicle (A). DAB
can be expressed as,

DAB = DB �DA,

where DB is the location along with the traffic direction of the
vehicle B, and DA is the location along with the traffic direction
of the subject vehicle (A). DAB < 0 implies that the vehicle A is
in front of the vehicle B along with the traffic direction.

• DVAB (or DVAC, DVAD, DVAE ): The speed difference between the
vehicle B (or C, D, E) on the target lane and the subject vehicle
(A). DVAB can be expressed as,

DVAB =VB �VA,

where VB is the velocity of the vehicle B, and VA is the velocity
of the subject vehicle (A).

5.1. Methodology

To make a decision for lane-changing in this work, we
need to learn a classification function F that takes x =
(DAB,DAC,DAD,DAE ,DVAB,DVAC,DVAD,DVAE) as the input and
then predict its corresponding classification label y (the target gap
that the subject vehicle will choose), based on the above collected
lane-changing samples. Among many possible classification mod-
els, we choose randomized forests for our purpose, because the ran-
domized forest method has been proven to be fast and effective
for multi-class classification tasks [Cri11]. In the following, for the
sake of completeness and readability, we will briefly describe the
randomized forest method. Readers can refer to the work of [Cri11]
for more algorithm details.

Basically, a decision forest is an ensemble of T decision trees.
Each node n in a decision tree is associated with a learned class
distribution P(y|n). A decision tree works by recursively branching
left or right down the tree according to a learned binary function of
the feature vector, until a leaf node l is reached.

In the randomized learning process, each tree is trained sepa-
rately on a random subset I0 ✓ I, where I denotes the training data.
When we generate the i-th decision tree during training, it will ran-
domly select m factors mentioned above as features. The goal of

node splitting is to maximize the information gain. Here we adopt
the classical Shannon’s information theory to describe the informa-
tion gain, described below.

For each feature (from 1 to m), each node n have three classes.
Let y1, y2 and y3 denote the three classes. We use p(yi|n) denote
the probability of a sample in subset In belonging to yi (i = 1,2,3).
Then, the impurity of node n can be computed as:

I(n) =�
3

Â
i=1

P(yi|n)log2P(yi|n)

P(yi|n) can be straightforwardly estimated by Ni
n/Nn, where Ni

n
is the number of samples in In that belong to class yi, and Nn is
the total number of samples in In. Then, the information gain DI(n)
that current feature would bring can be computed as:

DI(n) = I(n)�
3

Â
i=1

Ni
n

Nn
I(yi)

Among all the candidates, the one that can lead to the maximal
decreasing of impurity is chosen. If the probability of samples in
the subset belonging to any single class is more than P0 (a pre-
defined threshold), the splitting process will stop. Once the leaf
node is reached, the class label is given by y j, where

j = argmax
i

P(yi|n) (1)

In our method, T = 20, and P0 = 0.9. When we generate the
i-th decision tree during training, we set the number of randomly
selected features, m < 4.

After the model is trained, given a new set of input variables,
we can automatically calculate the probability of choosing a spe-
cific target gap for lane-changing. In the lane-changing execution
process, the subject vehicle will move to the target gap that has
the maximal estimated probability. If the estimated probabilities of
all the three target gaps by our model are below a threshold, the
subject vehicle will continue driving straightly and wait for a next
appropriate moment for lane-changing.

6. Lane-changing Execution

In the lane-changing execution process, the subject vehicle needs
to smoothly change from the current lane to the target gap that has
been selected in the above decision-making process, without caus-
ing any vehicle collisions. The subject vehicle need to adjust its
velocity in both the lateral and longitude directions, based on all
the factors observed in the surrounding environment. In this pro-
cess, the velocity of the subject vehicle is calculated by a trained
back-propagation neural network. Also, the new follower vehicle
on the target lane would need to adjust its velocity to maintain an
appropriate safe gap to avoid potential collisions.

6.1. Inputs of Lane-changing Execution

We keep the relative distance and velocity from the subject vehicle
to the new leader vehicle, the relative distance and velocity from

c� 2016 The Author(s)
Eurographics Proceedings c� 2016 The Eurographics Association.



H. Bi, T. Mao, Z. Wang, & Z. Deng / A Data-driven Model for Lane-changing in Traffic Simulation

the subject vehicle to the new follower vehicle as a part of inputs to
the employed machine learning model. Meanwhile, lane-changing
execution is a continuous process; we also need to use the pre-
vious states of the involved vehicles as input variables to ensure
the smoothness of vehicle movement. In addition, since the lane-
changing behavior contains movement in the lateral direction, we
also include the lateral velocity of the subject vehicle and the rel-
ative distance in the lateral direction from the current lane to the
target lane as additional input variables. These input variables are
detailed as follows (refer to Fig. 4 for illustration).

Figure 4: Schematic illustration of the input variables to the
learned lane-changing execution model

• vlongitude(t): The velocity of the subject vehicle in the traffic di-
rection during lane-changing at t.

• dleader(t): The gap distance between the leader vehicle on the
target lane and the subject vehicle in the longitude direction at t,

dleader(t) = yleader(t)� y(t),

where yleader(t) denotes the coordinate of the leader vehicle
along the traffic direction, and y(t) denotes the coordinate in the
longitude direction.

• d f ollower(t): The gap distance between the follower vehicle on
the target lane and the subject vehicle in the longitude direction
at t,

d f ollower(t) = y f ollower(t)� y(t),

where y f ollower(t) denotes the coordinate of the leader vehicle
along the traffic direction, and y(t) denotes the coordinate in the
longitude direction, the minus of dleader(t) and d f ollower(t) only
represent the relative relationship between the vehicles.

• Dvleader(t): The velocity difference between the leader vehicle
on the target lane and the subject vehicle in the traffic direction.
Dvleader(t) can be expressed as:

Dvleader(t) = vleader(t)� vlongitude(t),

where vleader(t) is the velocity of the leader vehicle.
• Dv f ollower(t): The velocity difference between the follower ve-

hicle on the target lane and the subject vehicle in the traffic di-
rection. Dv f ollower(t) can be expressed as:

Dv f ollower(t) = v f ollower(t)� vlongitude(t),

where v f ollower(t) is the velocity of the follower vehicle.
• Dx(t): The lateral distance to the target lane of the subject vehicle

at t;
• vlateral(t): The velocity of the subject vehicle in the lateral direc-

tion during lane-changing at t;

6.2. Outputs of Lane-changing Execution

In order to take account of the cooperative behavior between the
subject vehicle and the follower vehicle during lane-changing with-
out collisions, our model need to calculate the velocities of the
subject vehicle and the follower vehicle at any moment simulta-
neously. Specifically, the following three outputs are generated by
our trained lane-changing execution model.

• vlongitude(t +1): The velocity of the subject vehicle in the traffic
direction during lane-changing at t +1;

• v f ollower(t+1): The velocity of the follower vehicle in the traffic
direction when the subject vehicle changes its lane at t +1;

• vlateral(t + 1): The velocity of the subject vehicle in the lateral
direction during lane-changing at t +1;

To the end, the states of lane-changing execution, denoted by
a vector, can be described as a function of the above mentioned
outputs as follows.

(vlongitude(t +1),v f ollower(t +1),vlateral(t +1))
= f (vlongitude(t),dleader(t),d f ollower(t),Dvleader(t),

Dv f ollower(t)),Dx(t),vlateral(t))

6.3. Methodology

In this work, we employ back-propagation neural network (BPNN)
to model the lane-changing execution process. The BP learning al-
gorithm we use can be divided into two phases: propagation, and
weights update. At the propagation phase, it forward transfers train-
ing input through neural networks to generate the propagation’s
output activations. After that, the output activations are transferred
through the neural networks using the target output to generate the
gradients of all the output and hidden neurons. At the second phase
(the weights update phase), the output delta and input activations
are multiplied to obtain the gradients of the weights. Weights are
brought in the opposite direction of the gradients by subtracting a
ratio (the weight learning rate).

In one iteration, the outputs of BPNN can be calculated as fol-
lows:

2
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3

7775
=

2

664

h(Ânk
i=1 wk�1

i,1 si,k�1 +bk
1)

...
h(Ânk

i=1 wk�1
i,l si,k�1 +bk

l )

3

775

where h(·) denotes the transfer function, wi,l is the weight connect-
ing the i-th neuron in the (k � 1)-th layer and the l-th neuron in
k-th layer, si,k�1 is the value of the i-th neuron in the (k � 1)-th
layer, and bk

l denotes the bias for the l-th neuron in the k-th layer.
In addition, the BPNN learning in one iteration can be written as:

Wk+1 =Wk �akgk,

where Wk is the vector of current weights and biases, ak denotes
the learning rate, and gk denotes the current gradient. More details
of BPNN learning can be found in the work of [HN89].

In our implementation, the used BPNN has 3 hidden layers, and
each hidden layer has 5 nodes. A non-linear sigmoid transfer func-
tion is used as follows:
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h(z) =
2

1+ e�2z �1

We set the learning rate ak = 0.01. At the first iteration, weights
and biases are initialized as random values between 0 and 1.

In the lane-changing execution process, we take the traffic en-
vironment information of the subject vehicle as the inputs of the
BPNN model. The trained BPNN can map the traffic environment
information and the states of vehicles to the velocities of the sub-
ject vehicle and the follower vehicle at next moment during lane-
changing.

6.4. Control of Boundary Conditions

Despite the above advantages of BPNN, it does not contain any
physical significances. Therefore, we need to add boundary condi-
tions to control the outputs of neural networks, namely, the veloci-
ties of the subject vehicle and the follower vehicle, as follows.

• Maximum acceleration: During the lane-changing process, the
velocities of the subject vehicle and the follower vehicle are vari-
ational at each frame of simulation. The velocity we learnt also
should obey the maximum acceleration of traffic data. If the ve-
locity difference between two adjacent frames is more than the
maximum acceleration, the vehicle will accelerate with the max-
imum acceleration.

• Maximum deceleration: Similarly, if the vehicles involved in
lane-changing need to decelerate to avoid collisions, and the ve-
locity difference we calculate through BPNN is more than the
maximum deceleration, we simply set it to the maximum decel-
eration.

• Minimum safe distance: Due to the driving safety reason, the ve-
hicles during lane-changing need to keep a minimal safe distance
from the leader vehicle.

7. Experimental Results and Evaluations

We have implemented and tested our method on an off-the-shelf
PC equipped with Intel Core (TM)2 CPU 6320@1.86 GHz, 8 GB
main memory, and NVIDIA GetForce 8800 GTS graphics card.

7.1. Quantitative Analysis of Lane-changing Decision Making

Recalled in the above Section 5, we transform the lane-changing
decision making problem (i.e., which gap on the target lane the
subject vehicle should choose to switch to) to a classification prob-
lem. The used traffic data was 443 lane-changing samples selected
from the NGSIM dataset. Among the selected samples, the subject
vehicle chooses the forward gap in 45 samples (7277 frames), the
adjacent gap in 233 samples (37244 frames), and the backward gap
in 124 samples (20645 frames). We divided the above samples into
two groups: 80% for training and 20% for test.

We also compared the randomized forest method with other
well-known classification approaches including SVM (Support
Vector Machine), GBDT (Gradient Boost Decision Tree), and
Naive Bayes. Table 1 shows the obtained accuracies and the
used computational time of all the methods on our test computer.

Clearly, the results in Table 1 show that the randomized forest cho-
sen in our method can soundly outperform the other methods in
terms of accuracy.

Table 1: Comparisons between the randomized forests with other
well-known classifiers (SVM, GBDT, and Naive Bayes).

Classifier Accuracy Used Time

Randomized Forest 91.03% 0.4838s

GBDT 86.2% 1.4270s

SVM 84.5% 5.1806s

Naive Bayes 85.62% 0.1438s

7.2. Quantitative Analysis of Lane-changing Execution

For different lane-changing cases (i.e., choosing the adjacent gap,
forward gap, or backward gap), we trained different BPNN models.
Without the loss of generality, in this section we present in details
the quantitative analysis of the BPNN-based, lane-changing execu-
tion model for one specific case: when the subject vehicle chooses
the adjacent gap as the target gap. We still used 80% of the data for
training and 20% for test.

We also compared our method (BPNN-based) with a baseline
method (that is, Radial Basis Functions (RBF)-based method) in
Table 2. We used the R-squared to measure the simulated re-
sult. Then, we computed the percentage of test samples whose R-
squared are in the range of [90%, 100%]. As shown in Table 2,
our BPNN-based method can outperform the RBF-based baseline
method in terms of the accuracy of lane-changing execution.

Table 2: Comparison of our BPNN-based method and the RBF-
based baseline method in terms of the accuracy of lane-changing
execution.

Learning Method Accuracy Time Used for Training (second)

BPNN 95.74% 179.38

RBF 88.12% 392.7

Figure 5 plots the resulting error distribution of our approach
when it was applied to 47 test samples. We use the R-squared to
measure the simulated results of all the test samples. As illustrated
in this figure, the R-squared of all the test samples is in the range of
[80%,100%]. We also can see that, among the 47 tested samples,
the R-squared of the velocities-in-traffic-direction of the subject ve-
hicle in 45 samples is more than 95%. In addition, the R-squared
of the velocities-in-traffic-direction of the follower vehicle in 34
samples and that of the velocities-in-lateral-direction of the subject
vehicle in 33 samples are more than 95%. These results validated
that the simulated lane-changing execution of the vehicles by our
method well approximate their real-world counterparts.

7.3. Simulation Results

In order to further test the performance of our method, we used our
approach to simulate the continuous driving behaviors of the sub-
ject vehicle and the follower vehicle in lane-changing situations.
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Figure 6: Comparisons of the ground-truth, our method, and two existing methods [SBLM11, SJ12] for two selected examples: V2719 (top
row) and V2823 (bottom row). The purple curves denote the ground-truth trajectory from the NGSIM dataset, the green curves denote the
simulation results by our method, and the blue and yellow curves denote the results by [SBLM11, SJ12].

Figure 5: Resulting error distribution of our approach when it was
applied to 47 test samples.

Specifically, given only the trajectory data of the leader vehicle and
the initiate states of the subject vehicle and the follower vehicle as
well as the states of vehicles on the target lane, our method was
used to generate continuous lane-changing movements automati-
cally. These experiments are quite challenging, because the traffic
states of the current frame is used as the inputs to the computation
of next frame in this simulation process, which leads to accumu-
lated simulation errors over frames.

Without loss of generality, we took the lane-changing simula-
tion experiments for the vehicle #2719 (abbreviated as V2719) and
the vehicle #2823 (abbreviated as V2823) as two examples (refer
to Fig. 6). These two vehicles with quite different lane-changing
patterns are picked randomly, but our method performed well for
both cases. The velocity of the V2719 increases steadily and only
decreases slightly at the last part of the lane-changing process. By
contrast, the velocity of V2823 keeps somewhat stable at the first
part, then declines quickly, and then increases steadily. Fig. 6 shows
the comparisons among the ground-truth, the simulation results by
our approach, and the simulation results by two selected state-of-
the-art methods [SBLM11, SJ12].

As shown in Fig. 6(a) and (d), the simulated velocities in the
longitude direction (that is, along with the traffic direction) of the
subject vehicle are roughly close to the ground-truth, and perform
better than the two state-of-the-art methods in terms of the over-
all pattern matching. Also, compared with the ground-truth, our
method can produce more similar lane-changing patterns than the
two selected methods, in terms of the velocities in the lateral direc-
tion (Fig. 6 (c) and (f)) and the velocities of the follower vehicle
(Fig. 6 (b) and (e)). It is noteworthy that the velocity of the fol-
lower vehicle, computed by our method, slows down to make a
larger gap for cutting if the current gap is too small for the subject
vehicle (V2832), which is consistent with previous research stud-
ies in [Hid05]. However, if the current gap between the follower
vehicle and the subject vehicle is sufficiently safe, the follower ve-
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Figure 7: Statistics comparisons of the ground-truth, our method, and two existing methods [SBLM11, SJ12] for two selected examples:
V2719 (top row) and V2823 (bottom row). The purple curves denote the ground-truth trajectory from the NGSIM dataset, the green curves
denote the simulation results by our method, and the blue and yellow curves denote the results by [SBLM11, SJ12].

hicle just drives mostly based on the its individualized driving states
(V2719).

7.4. Comparison with State-of-the-art Methods

We also compared our method with two selected state-of-the-art
methods [SBLM11, SJ12] in terms of lane-changing simulation. In
terms of decision-making for lane-changing, both the above meth-
ods only check whether the adjacent gap on the target lane is avail-
able. Otherwise, they continue to repeat the checking process at
the next moment. We randomly extracted 100 samples to test the
decision-making results at the starting moment of lane-changing
by different methods. As shown in Table 3, 25 vehicles chose the
backward gaps for lane-changing, 50 vehicles chose the adjacent
gaps, and the remaining 25 vehicles chose the forward gaps. There-
fore, as indicated in Table 3, our method has substantially more
chances to complete lane-changing without collisions than the two
existing methods [SBLM11, SJ12]. The reason why the numbers
for existing methods choose adjacent gaps are lower is that they
use a curve to execute lane-changing and ingore the cooperation
among vehicles.

Fig. 6 compares some key variables in the execution of lane-
changing by different methods in two test examples. As shown in
Fig. 6(a) and (d), vlongitude of the subject vehicle by Sewall et al.’s
method [SBLM11] only keeps a relatively fixed pattern due to the
limit of the employ clothoid curves. Similarly, because the dynamic

Table 3: Decision-making result comparison between our method
and the two existing methods [SBLM11, SJ12].

Backward gaps Adjacent gaps Forward gaps

ground truth traffic 25 50 25

our method 13 44 21

Sewall et al.’s method 0 24 0

Shen and Jin’s method 0 37 0

turning angle is used to form the constraints in the lateral direc-
tion in both the existing methods, vlateral of the subject vehicles by
them have similar patterns (i.e., first increasing and then decreas-
ing), which is quite different from the measured ground-truth data
(Fig. 6(c) and (f)). Also, it is noteworthy that, since Shen and Jin’s
method [SJ12] uses a car-following model to compute its velocity
during lane-changing, its performance highly depends on the pre-
defined parameter values of the used car-following model such as
the desired vehicle speed, comfortable deceleration, and so on.

Fig. 7 further compares our method with the same two methods
in terms of additional statistics: positions in the longitude/lateral
directions ((a) and (d)), the subject vehicle’s gap to the leader vehi-
cle during lane-changing ((b) and (e)), the follower vehicle’s gap to
the subject vehicle during lane-changing ((c) and (f)). We can see
that the results by our method is clearly closer to the ground-truth
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than the other two methods. Also, when the subject vehicle is doing
lane-changing, the follower vehicle always keeps a safe gap with it
and the gap increases gradually (Fig. 7(c) and (f)). Note that both
Sewall et al.’s method and Shen and Jin’s method cannot calculate
the velocity of the follower vehicle; instead, they use car-following
model to calculate its velocity. Therefore, the velocities of the fol-
lower vehicle in these two methods are not plotted in Fig. 7(c) and
(f).

We also compared the visualized vehicle trajectories during lane-
changing by our method and the ground-truth. Fig. 8 shows an ex-
ample of side-by-side comparison between several selected frames
of a ground-truth traffic segment and those simulated by our ap-
proach. In this example, the lane-changing vehicle trajectory is
very close to the ground-truth. We also visually compared the lane-
changing vehicle trajectories by our method and the two existing
methods [SBLM11, SJ12], and our method generated more sound
trajectories than the other two for all the test examples. Compar-
isons of their animation results can be found in the supplemental
demo video.

In sum, our method can clearly outperform the two existing
methods [SBLM11, SJ12] in terms of lane-changing simulation,
due to the following main reasons.

• In our approach, the subject vehicle has more selection options
to perform lane-changing, since its selection is not limited to the
adjacent gap on the target lane, but also the forward and back-
ward gaps.

• The two existing methods are only accurate at a coarse level,
since they heavily depend on empirically-tweaked parameter
values. By contrast, our method can obtain a better simula-
tion accuracy, because it learns the behavior patterns of lane-
changing vehicles automatically from real-world data.

We also tested our approach on a number of new virtual road
networks. In these experiments, we used our approach for lane-
changing, and used the IDMM model described in [SJ12] for car-
following. For animation results, please refer to the supplemental
demo video.

8. Conclusion and Discussion

We present a new data-driven method to simulate the process of
lane-changing in traffic simulation. Our method can make the sub-
ject vehicle to take account of more gap options on the target lane
to cut in as well as achieve more realistic lane-changing trajec-
tories for the subject vehicle and the follower vehicle. Through
many experiments and comparisons with two selected state-of-the-
art methods, we show that our approach can soundly outperform
them in terms of lane-changing simulation accuracy and quality.
Our model can be flexibly used together with a variety of existing
car-following models to produce natural traffic animations in vari-
ous virtual environments.

Despite the demonstrated effectiveness of our method, it still has
a few limitations. Our current model is still not generalized enough
to handle all kinds of lane-changing behaviors in traffic simulation.
For example, if the velocities of the simulated traffic is close to
those in the training dataset, our method can perform well. How-

ever, if they are quite different, the resulting lane-changing simula-
tions by our method may not be satisfactory. Such a failure example
is shown in Fig. 9, where the vehicle velocities are far beyond the
velocity range in the training dataset, the predicted lane-changing
behaviors are less accurate. On the other hand, we do not take driver
variability into account.

Figure 9: Comparison between a simulated result by our method
and the ground-truth data. (a): The velocity of the subject vehicle in
the longitude direction, and (b): the velocity of the follower vehicle.
This vehicle took 178 frames to complete the lane-changing. It is
obvious that the predictions are less accurate after the 85-th frame.

In this work, we mainly focus on simulating the lane-changing
behavior of the subject vehicle and other surrounding vehicles on
high ways. And our method is applicable to regular traffic. Irreg-
ular traffic, such as lanes might not be explicitly defined or roads
with different surfaces, are difficult to simulate. Also, we cannot
straightforwardly apply our current work to simulate lane-changing
on local roads such as local intersections. As our future work, we
plan to extend this framework to learn individual vehicles’ driving
characteristics including the lateral and longitude motion in local
roads, which would lead to more vivid traffic reconstruction and
simulation for many applications.
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