
Interactive Cage Generation for Mesh Deformation

Binh Huy Le ⇤ Zhigang Deng †

Disney Research at Pittsburgh University of Houston

Figure 1: Examples of cages generated by our approach. The leftmost image illustrates the user-specified cut slides for the Fertility model.
The results by our method are comparable to artist-crafted cages in terms of quality.

Abstract

Many previous efforts have been focused on generating optimal co-
ordinates for cage deformation; cage generation for 3D models has
been relatively understudied. We introduce an efficient complete
pipeline to generate high quality cages for 3D models with arbi-
trary topological complexities, including high genus models and
those without perceptible skeletal structures. Specifically, start-
ing from user-specified cut slides, our method automatically opti-
mizes the consistent, orthogonal orientations of cage cross sections.
Then, through automated cage meshing and refining, it can further
improve the cage quality by tackling the cage coverage issue and
bounding the input model with a controllable tightness. Our exper-
iments demonstrate this approach is efficient and robust to handle a
variety of 3D models including human-like, animal, and high genus
models.

Keywords: cage generation, cage-based deformation, and geo-
metric deformation

Concepts: •Computing methodologies ! Mesh geometry mod-
els;

1 Introduction

Among various geometric deformation methods, cage-based defor-
mation has gained increasing popularity, due to its intuitiveness,
simplicity, and performance. A cage is a low-resolution control

⇤e-mail:bbinh85@gmail.com
†email: zdeng4@uh.edu

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. c� 2017 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
I3D ’17, February 25 - 27, 2017, San Francisco, CA, USA
ISBN: ACM 978-1-4503-4886-7/17/03$15.00
DOI: http://dx.doi.org/10.1145/3023368.3023369

mesh that closely bounds the high-resolution model. When the
cage is manipulated, its deformation will be smoothly propagated
to the enveloped model using pre-computed cage coordinates or
weights [Ju et al. 2005; Joshi et al. 2007; Lipman et al. 2008]. De-
spite many advantages of cage-based deformation, currently cages
in these previous works are constructed manually. Indeed, design-
ing high-quality cages for any given 3D meshes is still a non-trivial
under-studied research problem [Jacobson et al. 2014].

As pointed out by Jacobson et al. [2014], a high-quality cage for
mesh deformation is expected to have the following desired quali-
ties:

• It needs to be low resolution. A low-resolution cage with a
small number of control vertices would help to reduce the
amount of manual efforts in the mesh deformation process.

• It needs to fully and often tightly bound the enveloped model.
The cage coordinates are well defined in the 3D space
bounded by the cage, and often users do not want 3D geome-
try outside the cage to be deformed by it. Therefore, a tightly
bounded cage would be desired in general [Nieto and Susı́n
2013].

• Its structure needs to respect the topology of the enveloped
model. In this way, users can intuitively identify which parts
of the cage to manipulate in order to achieve the desired de-
formation on the enveloped model.

Inspired by the above challenges, in this paper we propose an effi-
cient and practical method to construct high quality cages for input
meshes. Its core idea is to first obtain a set of cut slides, construct an
initial cage via the automated orientation optimization of cage cross
sections and cage meshing, and finally refine the cage by fixing the
coverage issue and providing a controllable tightness. To this end,
the resulting cages by our method have the aforementioned desired
qualities. With our method, users can efficiently build high qual-
ity cages for various 3D models including high genus models and
those without perceptible skeletal structures at an interactive rate on
an off-the-shelf computer. Through many experiments, we demon-
strate the efficiency and generality of our approach.

In this work we choose to focus on the design of an interactive
pipeline for cage generation, instead a fully automatic solution, due
to the following two main reasons. 1) It is difficult to design a

Figure 2: Various cages are generated for the Armadillo model
by our method and some previous methods, including voxel-grid
based [Ben-Chen et al. 2009], mesh simplification based [Deng
et al. 2011], oriented bounding box based [Xian et al. 2012], and
skeleton-driven [Chen and Feng 2014].

well-generalized, fully automatic approach to generate high qual-
ity cages for any complex models with arbitrary topologies, due to
the varied complexities of 3D models. Therefore, instead, we fo-
cus on an efficient approach with affordable user interaction, even
for novice users, to handle 3D models with a range of complexi-
ties, from common human-like models to those without perceptible
skeletal structures, and to high genus models. 2) In practice, intu-
itive user interaction is a key element of most computer animation
tools, since often the fully automated results may not meet the ex-
pectation perfectly. As a result, animators would still need user
interaction to utilize their professionally trained skills, as well as to
facilitate their artistic creativities, in order to improve the results.
For a given 3D model, with our approach users typically need no
more than several minutes to generate its high quality cage that is
comparable to artist-crafted cages in terms of quality. Fig. 1 shows
some example cages generated by our approach.

This work makes the following main technical contributions: (1)
An efficient and complete pipeline is proposed to build high quality
cages for a variety of 3D models, from human-like models to com-
plex models including high genus models and those without per-
ceptible skeletal structures. (2) An optimization algorithm is pro-
posed to robustly solve the consistent and orthogonal orientations of
cage cross sections in a global manner, which significantly outper-
forms previous methods that typically solve the same challenge in
a heuristic way. (3) Novel cage meshing and refinement algorithms
are proposed to allow users to intuitively control the tightness of
the generated cage as well as to improve the quality of the cage
structure.

2 Related Work

Cage based deformation. Researchers have proposed various
methods to compute generalized barycentric coordinates with re-
spect to the vertices of the bounding cage, including Mean Value
Coordinates [Ju et al. 2005; Floater et al. 2005] and its variants [Li
et al. 2013], Harmonic Coordinates [Joshi et al. 2007], and Green
Coordinates [Lipman et al. 2008]. To improve the efficiency or
controllability of cage-based deformation, researchers further de-
veloped novel methods to combine cages with different types of
coordinates [Garcı́a et al. 2013], and combine cages with bones and
points via bounded bi-harmonic weights [Jacobson et al. 2011].

Cage generation. In recent years, a number of automatic or

semi-automatic techniques have been proposed to generate cages
for 3D models. These methods can be roughly categorized into
four types (Fig. 2): template based, simplification based, bounding
shape based, and skeleton-based, described below.

Template based cage generation methods [Yang et al. 2013; Ju et al.
2008] assemble a set of cage templates with pre-defined topologies
to generate a closely bounded cage for a given 3D model. However,
one common limitation of these approaches is to require a set of
carefully pre-defined templates to cover various topologies; even
so, they cannot be easily generalized to handle complex models
since it is non-trivial to design suitable templates for complex joint
areas beforehand.

Simplification based methods [Ben-Chen et al. 2009; Deng et al.
2011; Sacht et al. 2015] simplify the expanded version of the input
model to produce a low-resolution cage. However, users are not
able to intuitively control the topology of the resulting cage during
this simplification process. Therefore, the vertex distribution of the
resulting cage may not meet the users’ requirement.

Bounding shape based approaches (e.g., [Xian et al. 2012]) build
the cage by refining the bounding shape of the input model. It builds
the cage for an input mesh by first generating oriented bounding box
(OBB) for each mesh part and then registering the OBBs together.
But it suffer from the following limitations: First, OBB is suitable
for cylinder-like mesh parts; for joint areas where the deformation
can be complex, the OBB is too rigid to provide the desired control-
lability. Second, the resulting cages cannot guarantee to fully bound
the input model, because the partial cages (OBBs) are constructed
independently, and the inconsistency among their orientations can
cause potential twisting artifacts.

The skeleton-based approach [Chen and Feng 2014] first utilizes a
user-sketched skeleton to guide the creation of many partial cages
and then stitches them together. However, it solves the orientations
of the partial cages in a heuristic manner, which is less robust and
could cause noticeable twisting artifacts on the resulting cages for
certain 3D models. Also, the cages by this method cannot guarantee
to fully bound the input model (refer to the Armadillo model in
Fig. 2). Furthermore, its applicability for handling complex models
such as high genus models has not been demonstrated.

Efforts have also been done to construct cages from sequence data.
For example, along the spirit of reverse engineering, researchers
have proposed automatic methods to reconstruct a cage control se-
quence (i.e., cage parameters), given an animated mesh sequence
[Thiery et al. 2012; Chen and Feng 2014] or a calibrated multi-view
image sequence [Savoye and Franco 2010].

3 Method Overview

Figure 3: Three main steps in our pipeline: (1) orientation op-
timization, (2) cage meshing, and (3) cage refinement. At the step
(1), cut slides are illustrated as red ellipses, and the optimized cross
sections are illustrated as green rectangles.

The input of our method includes a given 3D model and a set of
cut slides (§3.1). The input models considered in this work are
only watertight manifolds, which can be represented as triangle

meshes. The cut slides are typically specified by users, holding the
main frame for the cage. Each cut slide contains four automatically
computed cage vertices that make a nearly rectangular cage cross
section (or called cross section for brevity in this paper). In other
words, a cross section is the intersection region of a cut slide and
the cage, and all cross sections together divide the whole cage into
parts.

For every change on the set of cut slides, our method recomputes a
new cage at an interactive rate. In one computing cycle, our method
performs three main steps as illustrated in Fig. 3. First, we find the
optimal orientation of each cross section (green) so that it aligns
well with the cut slides (red) as well as other neighboring cross
sections to avoid cage twisting (§3.2). Then, we perform a mesh-
ing operation to generate the triangular mesh topology of the cage
(§3.3). Finally, we refine the control vertices of the cage to ensure
it fully and tightly bounds the input model (§3.4).

3.1 Cut Slides

We represent a cut slide k by an ellipse in 3D space as illustrated in
Fig. 4. Each cut slide is determined by: a center c

k

inside the input
model, a unit normal vector ~n

k

of the plane containing the ellipse,
and two radii ~u

k

and ~v
k

such that ~n
k

is in parallel with ~u

k

⇥~v

k

. The
two radii represent the two principal directions of the cut slide, and
they are later used to align the orientation of the cage cross section
contained in k (§3.2).

The set of planes containing cut slides, called cut slide planes, seg-
ments the input model into parts, each of which is a 3D volume en-
closed by the model and the cut slide planes. To obtain the parts, we
first intersect each cut slide plane with the model and remove all the
triangles on the intersection. Each intersection is a closed loop that
encloses the center c

k

on the cut slide plane. Then, we identify each
part as a connected component in the remaining triangle-triangle
graph (the dual graph of the mesh). To simplify the implementa-
tion, we disallow any two cut slides to intersect inside the model;
this constraint is enforced by disallowing any pair of intersection
loops to share the same triangle.

Figure 4: Cut slides (red ellipses) segment the model into parts
(color coded). Note that those triangles intersected with the cut
slides are not considered to be a portion of any parts.

We generate the cut slides from user-drawn strokes on the input
model, and each cut slide is computed by fitting an ellipse to sample
points on the strokes. Specifically, we first fit a plane to the sampled
points. Then, we project these points to the plane and fit a 2D ellipse
to the projections [Fitzgibbon et al. 1999]. Finally, the 2D ellipse is
transformed back to 3D space.

Although automating the generation of cut slides could be possi-
ble (e.g., perform automated mesh segmentation [Shamir 2008] and
then use the vertices on the segment boundaries for ellipse fitting),
we did not investigate our approach in this direction, as the user in-
teraction in our approach is very affordable and intuitive. Further-
more, it provides users full flexibility and controllability, especially
for handling high genus models and other complex ones, e.g., the
fertility model and the elk model (shown in Fig. 1 and Fig. 4) or
other results shown in Fig. 17. Detailed discussion on various cut
slide generation strategies can be found in §4.

3.2 Orientation Optimization

For each cut slide, its two radii are generally good local features
to align its corresponding cage cross section. However, if the cut
slide is sufficiently close to a circle, i.e. |~u

k

| ⇡ |~v

k

|, these two
vectors are not robust enough for a good alignment, for example,
the armadillo hand (shown at the bottom of Fig. 2) or the armadillo
thigh (shown at the right side of Fig. 5). Thus, we need to find the
optimal orientation of the cross section, that is, a rotated version of
the two radii ~u

k

,~v

k

around the center c
k

.

Figure 5: The optimal cross section orientations with the align-
ment strength parameter � decreasing from left to right. Left:
Cross sections are completely aligned to the radii of the cut slides
(� = 1e + 6); the cage at the thigh (blue) is twisted due to the
orientation inconsistency between the cut slide at the knee and the
cut slide near the hip. Right: The orientations of neighboring cross
sections are smoothed out (no alignment, � = 0); the cage has a
good planar-facet structure but the cross section at the foot (green)
does not align well with the model. Middle: � = 4 makes a good
balance between alignment and smoothness.

vk uk
nk

vh

uh

nh

We solve this problem by employing a
technique similar to [Knöppel et al. 2013]
to find a smooth aligned directional field,
where the soft smoothness constraints be-
tween neighboring cross sections help to
generate a robust solution that can avoid
cage twisting (shown in the middle of
Fig. 5). We say two cut slides or two
cross sections are neighbors if they bound
the same part. However, compared to
[Knöppel et al. 2013], our problem is more
general since our space is not limited to 2D manifold. If two neigh-
boring cross sections have nearly opposite normal vectors, the local
coordinates at these cross sections would need to be flipped over
to establish a parallel transportation (refer to the inset figure). In
this case, a direct application of the power of complex numbers
[Knöppel et al. 2013] would make the orientations of these cross
sections rotate in opposite directions.

Instead, we represent the orientation by 2D vectors and represent
the rotation by a 2⇥ 2 matrix, as illustrated in Fig. 6. For each cut

vk uk

pk

qk
vk uk

xk
pow4ck

Figure 6: In the local coordinate system of each cut slide, we take
the 4th power of the orientations ~p

k

, ~q

k

to make a unique represen-
tation x

k

, since p

k

is a ⇡/2 rotation of q
k

. Refer to the main texts
for the definition of the operator pow4.

slide k, we set up a 2D local coordinate system, where the origin
is the centroid c

k

and the two axes are the radii ~u
k

and ~v

k

, respec-
tively. In this coordinate system, we represent the optimal orien-
tation of the rectangular cross section by two orthogonal vectors
~p

k

, ~q

k

2 R2 which are parallel to the edges of the cross section.

Let pow4(~v) be an operator on ~v with the following four steps:

1. Normalize ~v to have a unit norm;

2. Convert the unit norm vector to a complex number in a
component-wise way;

3. Take the 4th power of the complex number;

4. and convert the result from step 3 to a vector form in a
component-wise way.

Since p

k

is essentially a ⇡/2 rotation of q
k

, we only need to work
on x

k

, the 4th power of ~p

k

, ~q

k

(depicted as the orange vectors in
Fig. 6), where:

x

k

= pow4(~pk) = pow4(~qk) = pow4(�~p

k

) = pow4(�~q

k

)

nk
nh

nhk

nk nh(,) uh
vh

uk

vk

Figure 7: Two cases of the smoothness constraint: (left) two cut
slides are almost perpendicular to each other, and (right) two cut
slides are almost parallel to each other. Refer to the main texts for
the calculation in both cases.

To the end, we formulate the orientation optimization problem as
the minimization of an energy function, E, described in Eq. (1).
It is defined as the sum of the smoothness energy, ES

kh

, and the
alignment energy, EA

k

. The smoothness energy (Eq. (2)) measures
the orientation consistency between two neighboring cut slides, and
the alignment energy of each cut slide (Eq. (5)) measures the match-
ness between the orientation of its corresponding cross section and
its radius vector.

E =

X

8neighbors k,h

E

S

kh

+

X

8k

E

A

k

(1)

In the above equation, E is a linear quadratic function, which can
be minimized by solving for the zero gradient. Then, we transform
the optimal solution of all x

k

back to the form of ~p
k

, ~q

k

(Fig. 6),
by converting x

k

to a complex number and then solving its 4th root.

Finally, we rescale both ~p

k

and ~q

k

by only fitting the two radii of
the cut slide ellipse to its corresponding cage cross section.

Smoothness energy. The smoothness energy between two neigh-
boring cross sections h and k is defined as follows:

E

S

kh

=

(
w

kh

��
x

k

� pow4(bnhk

)

��2 if](~n
k

,~n

h

) 2 [

⇡

4 ,
3⇡
4],

w

kh

��
R

kh

4
F

kh

x

k

� x

h

��2 otherwise.
(2)

In the above Eq. (2), the following two cases are considered:

• If h and k are almost perpendicular to each other (illustrated
in the left panel of Fig. 7), i.e. the angle between two normal
vectors](~n

k

,~n

h

) is in the range of [

⇡

4 ,
3⇡
4], we match the

orientation of k with that of h. Specifically, by projecting ~n

h

to the plane of k, we obtain its projection b
n

hk

. Then, we take
the pow4(bnhk

).

• If h and k are almost parallel to each other (illustrated in the
right panel of Fig. 7), we represent the rotational difference
between h and k by the matrix R

kh

F

kh

. The rotation matrix
R

kh

2 R2⇥2 represents the transformation between the local
coordinates of k and h. We compute R

kh

by projecting the
two lines containing ~u

h

and ~v

h

to the plane of k (blue and
purple dashed lines in the right of Fig. 7), and then find the
best rotation matrix to rotate these lines to the two lines con-
taining ~u

k

and ~v

k

(blue and purple solid lines in the right of
Fig. 7). Note that the two projection lines might not be per-
pendicular to each other; thus, we compute the best rotation
matrix by performing Singular Value Decomposition (SVD).
The flipping matrix F

kh

2 R2⇥2 is computed in Eq. (3), and
right multiplying it with R

kh

can change the rotation direc-
tion. At this step, the 4th power of the combined transforma-
tion, R

kh

4
F

kh

, is only performed on the rotation part, i.e.,
taking R

kh

4, since F

kh

4
= I cancels out the flipping (the

combination of 4 flips makes an identity transformation).

F

kh

=

1 0

0 sign(~n

k

· ~n

h

)

�
(3)

where: sign(x) =

(
1 if x > 0,

�1 otherwise.

The weight w

kh

controls the strength of each smoothness con-
straint, which is computed in Eq. (4). w

kh

favors cut slides with
large cross section areas s

k

+ s

h

, a small area difference |s
k

� s

h

|,
and a small centroid-to-centroid distance (c

k

� c

h

)

2.

w

kh

=

s

k

+ s

h

� |s

k

� s

h

|

(c

k

� c

h

)

2
(4a)

where: s
k

= |~u

k

|

2
+ |~v

k

|

2 (4b)

s

h

= |~u

h

|

2
+ |~v

h

|

2 (4c)

Alignment energy. For each cut slide k, we compute its align-
ment energy in Eq. (5), which matches the orientation of its cor-
responding cross section with the radius vector ~u

k

. In the local
coordinate system, this is equivalent to matching x

k

to the vector
pow4([1 0]

T
) = [1 0]

T. The alignment weight w
k

favors the mag-
nitude difference between ~u

k

and ~v
k

, i.e., if the cut slide ellipse was
less similar to a circular shape, the alignment is stronger; and vice
versa. The parameter � controls the strength of the alignment con-
straint, or called the trade off between alignment and smoothness.
Fig. 5 depicts the effect with different � values. We choose � = 4

in our experiments in this work.

E

A

k

= w

k

��
x

k

� [1 0]

T
��2 (5a)

where: w
k

= �

�
|~u

k

|� |~v

k

|

�2

|~u

k

|

2
+ |~v

k

|

2
(5b)

3.3 Cage Meshing

Before performing cage meshing, we add
one rectangular cap for each leaf part (i.e.,
bounded by only one cage cross section),
for example, the hands or feet of the ar-
madillo model. The cap is simply gen-
erated by pushing the (only) rectangular
cross section towards the centroid of the
part and rescaling the rectangle to fit with
the model (refer to the inset figure). Note that the four vertices of
the rectangular cross section are automatically generated from its
corresponding cut slide (ellipse), as described in §3.1.

Then, we perform meshing on each part as follows: First, we
project the corners and edges of all of its cross sections to a sphere,
whose center is the geometric center of all of its cross sections (de-
fined as the centroid of all of its cross sections). Then, we compute
the 3D Delaunay triangulation of the projected corners and edges.
Finally, we perform edge flipping to further optimize the triangula-
tion.

Figure 8: The cage corresponding to a part before edge flipping
(top) and after edge flipping (bottom).

We flip an edge if flipping it would make the cage smoother.
We elaborate this flipping condition as minimizing the difference
among the normals of neighboring cage faces. Specifically, as il-
lustrated in Fig. 8, we flip the purple edge if:

](~n
i

,~n1) +](~n
i

,~n2) +](~n
j

,~n3) +](~n
j

,~n4) +](~n
i

,~n

j

) >

](~n0
i

,~n2) +](~n0
i

,~n3) +](~n0
j

,~n1) +](~n0
j

,~n4) +](~n0
i

,~n

0
j

)

where ~n

x

denotes the normal vector of a triangle x, and](·, ·)
denotes the angle between two vectors. Note that a triangle x may
also belong to a cross section since we process parts individually
(shown in red color in Fig. 8). In this case, we consider the outward
normal of the cross section as the normal of the triangle x. Also,
since the cross sections establish a frame for the cage, we never flip
edges on them.

3.4 Cage Refinement

After performing the above cage meshing, we refine cage vertices
to make the cage fully bound the input model. Our cage refinement
(illustrated in Fig. 9) pushes the cage vertices outward while keep-
ing a minimal change on the normals of all the cage triangles, i.e.,
maximally preserving the orientations and ratios of the cross sec-
tions produced in §3.2. We can also control the distance between
the surface of the cage and the input model (i.e., the tightness of the

Refined Cage
Old Cage

Model

Outermost Vertex
Anchor Point

Δ

Figure 9: The cage is refined by pushing its vertices outward to
bound the input model at a distance of �, while keeping a minimal
change on the normals of all the cage triangles.

cage) by adjusting a parameter �. We choose � = 0 in most of our
experiments in this work, i.e., the generated cages tightly bound the
models; however, we can also easily relax the cage tightness via �,
as illustrated in Fig. 10.

Figure 10: Left: a tightly bounded cage. Right: a loosely bounded
cage. Here D

BB

denotes the diagonal length of the bounding box
of the input model.

To refine the cage, we first find the outermost model vertex, bi(t),
for each cage triangle t (Eq. (6)). The outermost model vertex is
the one with the largest signed distance to t, that is, in Eq. (6),
d(v

i

, t) = (v

i

� g

t

) · n

t

, where g

t

denotes the barycenter of t
and n

t

denotes the normal vector of t. Intuitively, if the signed
distance d(v

i

, t) is non-negative, vertex i is outside the cage and
we should push out t to cover i. Since the cut slides, as well as the
corresponding cross sections, divide the model into the same set of
parts, we only need to find the outermost vertex that belongs to the
same part P with t, that is, P is the part such that t 2 P . This
makes our algorithm fast and robust.

b
i(t) = argmax

i2P

d(v

i

, t) (6)

Assume the refined version of the cage triangle t is t

0. From the
outermost vertex b

i(t), we then compute an anchor point a
t

0 for
each cage triangle t (Eq. (7)). Intuitively, we want a

t

0 to be on the
same plane with t

0 that tightly bounds the model. Here, we consider
the following two cases:

• In Eq. (7a): if the outermost vertex b
i(t) is outside the cage,

or almost outside the cage within a tolerance of ��, we push
outbi(t) at a distance of � to make the anchor point.

• In Eq. (7b): Otherwise (that is, the outermost vertex b
i(t) is

inside the cage), we simply let the barycenter of the cage tri-
angle t, g

t

, be the anchor point.

a

t

0
=

⇢
vb
i(t) +�n

t

if d(vb
i(t), t) > ��, (7a)

g

t

otherwise. (7b)

Since t

0 keeps the normal vector n
t

and contains a
t

0 , the equation
of plane containing t

0 is (x � a

t

0
) · n

t

= 0. Let F (j) be the set
of all the cage triangles adjacent to the cage vertex j. We com-
pute the refined cage vertex j by solving the linear least squares in
Eq. (8), where u

(k)
j

denotes the position of the current cage ver-
tex j, and u

(k+1)
j

denotes the position of the refined cage vertex j.
As some cage vertices j have more than 3 adjacent cage triangles,
i.e., |F (j)| > 3, the refined cage vertices computed by this least
squares solution might change the normals of some cage triangles.
We minimize these changes by weighting the error of each cage
vertex j by the inverse of its squared distance to the anchor point
a

t

0 , i.e., 1

|u(k)
j �at0 |2

.

u

(k+1)
j

= argmin

x

X

t2F (j)

1

|u

(k)
j

� a

t

0
|

2

�
(x� a

t

0
) · n

t

�2 (8)

The above least squares fitting of cage vertices might not keep all
the anchor points to be exactly on the refined cage triangles. As a
result, the refined cage cannot guarantee to bound the model. How-
ever, as the signed distances of the outermost model vertices are
decreased, we can repeat the above refinement process, including
finding new anchor points and solving the least squares in Eq. (8),
until a maximal number of iterations are reached or the maximal
signed distance of all the outermost vertices reaches a threshold.
Specifically, in most of our experiments in this work, the maximum
number of iterations is set to 30, and the termination criterion is
the difference between the negative of the maximal signed distance
and � is no more than 0.1% of D

BB

(the diagonal length of the
bounding box of the model), as described in Eq. (9). Note that
when the cage is getting loosened, the maximal signed distance,
max

vi2P,t2P

d(v

i

, t), could become a negative value.

|� max

vi2P,t2P

d(v

i

, t)��| 10

�3
D

BB

(9)

In Fig. 11, we show an example of how the maximal signed dis-
tance and cage coverage are changed over all iterations until conver-
gence. In this example, the fast decreasing of the maximal signed
distance demonstrates the good convergence rate of our method.
Note that for an incomplete cage, e.g., when users only make an
insufficient number of cut slides, our iterative refinement process
might not converge. For this reason, we only run 10 iterations of
cage refinement while making cut slides, and then, we run the full
refinement process at the end to produce the final result.

4 Results and Discussion

Cut slide generation strategies. We use three common strategies
to make cut slides as shown in Fig. 12:

1. Cross section cut. This is the most common strategy where
the cut slide is a cross section of a branch of the model,
i.e., it is perpendicular to the medial axis of the model. In
general, cross section cuts are put at a local minimum (e.g.,
near a joint) or a local maximum (e.g., near a muscle bulge).
For most of articulated character models, where the body and
limbs can be clearly seen, we only need to make cross section
cuts as shown in Fig. 13. Most of the cut slides for human-like
models (Fig. 14) are also cross section cuts.

2. Sharp corner cut. This type of cut can be placed at the sharp
turn of the medial axis, such as the heels of the Armadillo
model or the corners of the Fertility model’s base (Fig. 1). In
general, a sharp corner cut makes a diagonal cross section on
the cage, which connects two nearly perpendicular branches
of the model, e.g., the foot and the leg.

0"

1"

2"

3"

4"

5"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16"Iteration #

M
ax

im
al

 S
ig

ne
d

D
is

ta
nc

e
(%

 o
f D

BB
)

Figure 11: The convergence of our iterative refinement for a cage
that tightly bounds the Armadillo model (� = 0). The maximal
signed distance is decreased to 0.00099⇥D

BB

after 16 iterations.
D

BB

denotes the diagonal length of the bounding box of the model.

Figure 12: Three common strategies of making cut slides: cross
section cut (1), sharp corner cut (2), and bump cut (3).

3. Bump cut. This type of cut is used to cover a bump on the
model, such as the back of the Armadillo model. Unlike the
two previous cut slide types, a bump cut does not rely on the
medial axis at the bump (there is no medial axis or the medial
axis is intangible). For this reason, bump cut slides are gener-
ally made by visual judgments. In Fig. 15, we show examples
where bump cuts are important to generate reasonable cages.

Figure 13: Cages for different articulated characters can be gener-
ated by making cross section cuts perpendicular to the medial axis
of the model. The cage for the Tyrannosaurus model contains de-
tails for fingers and toes. The cage for the Octopus model has a
large number of branches (its head and 8 arms).

Flexibility. The combination of the above cut slide strategies with
user interaction allows us to generate high quality cages for a va-
riety of 3D models, as shown in all of our results (Figures 1, 13
to 15 and 17). Note that even for a small class of models such
as human-like models, the design of their cages may vary signifi-
cantly as shown in Fig. 14. This challenge makes template-based
cage generation methods [Ju et al. 2008; Yang et al. 2013] fall short
easily. In practice, it is also non-obvious to generate similar results

Figure 14: Human-like models might have very different structures.
Our interactive method offers flexible customizations for cage gen-
eration such as the skirt (middle) or the balls on the costume of the
clown (right).

Figure 15: Examples of bump cut slides: A cut to cover the breast
of the Duck model and many cuts to cover the face, the tail, the
back, two legs, and four feet of the Bunny model. Without making
these bump cut slides, the generated cages could not reasonably
cover the input models.

with fully automatic methods, since non-trivial parameters tuning
efforts often require visual feedback, and a set of global parame-
ters to fit all the parts of the model may not exist. For example, we
need to set up different resolutions to generate cage details for body
and fingers of the Tyrannosaurus model (Fig. 13), including using
different grid resolutions [Ben-Chen et al. 2009], different mesh
resolutions [Deng et al. 2011], different sizes of bounding boxes
[Xian et al. 2012], or different cross section sampling rates on the
skeleton [Chen and Feng 2014].

Based on the cages generated by our approach, animators can con-
veniently incorporate them into deformation editing in various an-
imation software packages (e.g., Autodesk Maya) and then effi-
ciently sculpt various poses for the given 3D models. Fig. 16
shows Maya snapshots of a cage-based deformation application af-
ter the cages, generated by our approach, are incorporated into the
Maya software via an in-house developed plug-in. In this cage-
based deformation application, we used the Bounded Biharmonic
Weights [Jacobson et al. 2011] to generate deformation coordinates,
and computed the rotation of cage vertices by minimizing the As-
rigid-as-possible energy [Sorkine and Alexa 2007].

High genus models. Since our orientation optimization step (§3.2)
can handle the arbitrary topological connection of parts, we can
naturally generate cages for high genus models, such as the Fertil-
ity model in Fig. 1, or more challenging models as shown in Fig. 17.
Utilizing user interaction allows the preservation of the full topol-
ogy of the model (e.g., the Children model), or allows the removal
of small topological features or noise on the model (e.g., small holes
on the Buddha model).

Figure 16: Snapshots of a cage-based deformation application in
Autodesk Maya, where the cages generated by our approach are
incorporated into Maya via an in-house developed plug-in.

Comparison with the nested cage method. The nested cage
method [Sacht et al. 2015], considered as the state of the art in
cage generation, focuses on a fully automatic solution, while the
emphasis of our method is interactivity and intuitive user control.
Therefore, they are complementary to each other; it is not fair to
do direct comparison between them. However, as pointed out in
[Sacht et al. 2015], for certain complex 3D models, with the nested
cage method a coarse cage could collide with itself during inflation,
which may create a pinch to cause the algorithm to fail. By contrast,
our approach can provide a practical solution to avoiding such is-
sues, since our method allows users to intuitively add or adjust cut
slides to influence the resulting cage.

It is noteworthy that the cage expansion mechanism used in the
nested cage method [Sacht et al. 2015] can be potentially used as
an alternative to the cage refinement step (§3.4) in our approach. In
addition, the sketch-based interface for quad-meshing [Takayama
et al. 2013] could provide a potentially interesting alternative for
user interaction in our approach: instead of specifying cut slides,
the users can also interactively specify curve networks on the mesh
[Takayama et al. 2013] to guide the generation of the initial cage.

Comparison with manual cage generation. We invited an ani-
mator with intermediate modeling experience to manually build a
cage for the Armadillo model, which has a similar structure to the
cage generated by our approach. Despite the simplicity of the input
model, the manual cage building took about 2 hours for him to craft
a cage with 128 vertices and 252 triangles. In particular, the ma-
jority of his time was spent on vertex positions adjustment, edges
splitting, and faces extruding in Maya. In contrast, using our ap-
proach, it only took about 2 minutes for him to make 23 cuts slides,
most of which were generated by only one stroke without requiring
any adjustment. As the design of the cage was given beforehand,
trial-and-error was not needed in both tasks. However, it is notewor-
thy that, if trial-and-error is needed, the full manual method would
need much more trial-and-error time than our approach.

Runtime performance. Since most of the steps in our pipeline
work on the low resolution cage, instead of the high resolution in-
put model, the runtime and memory footprint of our approach are
small. Our orientation optimization (§3.2), cage meshing (§3.3),
and cage vertices fitting can achieve linear time and memory ef-

Figure 17: Our method can handle high genus models (from left to right: Buddha, Children, and Dragon), thanks to its orientation opti-
mization (§3.2) that can work on the arbitrary topological connection of parts. Utilizing user interaction helps to ignore small holes on the
Buddha model. Note that all the cages in this figure tightly bound the models (� is in the range between 0 and 0.001), and certain rendering
artifacts on the cages are mainly caused by the unavoidable numerical error during the computing process.

ficiencies with respect to the number of cut slides (or the number
of cage vertices/triangles). The only step that consumes significant
computing time is to find the outermost model vertices (Eq. (6) in
§3.4), and its runtime is proportional to the resolution of the input
model and the number of cut slides. Among our experiments in
this work, the most complex result is the Children model (Fig. 17),
which includes 724,742 vertices, 1,449,512 triangles, and 53 cut
slides in the final cage. For this model, the orientation optimization
and cage meshing steps took 136 ms and the cage refinement step
took 1,590 ms for 10 iterations. Its total memory footprint was only
950 MB with the use of double precision floats. The experiment ran
on a 4-core Intel i7 computer with our C++ implementation using
the Eigen library [Guennebaud et al. 2015] for numerical comput-
ing tasks and the libigl library [Jacobson et al. 2015] for geome-
try processing tasks. We also used OpenMP to find the outermost
model vertices in parallel.

Figure 18: Limitations of unbounded, planar cut slides. (left) The
planar cut slides cannot separate some parts, e.g. two legs (cir-
cled in green), self-intersection between different parts of the cage
(circled in red). The right shows the corrected cage.

Limitations. The main limitation of our approach is that it only
uses unbounded, planar cut slides. This type of cut slides may
limit the separability of the model and could initially create a self-
intersecting cage at certain unusual scenarios. As shown in the left
of Fig. 18, for the complex Children model, with unbounded cut
slides, we cannot make one cut slide perpendicular to the legs and
another one parallel to the legs (to split two legs) while prevent-
ing these cut slides from intersecting each other. However, even
if such a self-intersection happens on certain complex models, it
can be fixed using the following scheme: first detect the cage self-
intersection [Alliez et al. 2015], tetrahedralize the internal volume
of the cage [Si 2015], and finally remove non-boundary triangles
in the tetrahedralization [Jacobson et al. 2013], which results in the
corrected cage. One example is shown in the right of Fig. 18.

As cross sections in the cage are fixed to the planes of cut slides, the
rotations of the cross sections or the cage refinement could make
a branch of the cage intersect with its other branches. In addi-
tion, as we only model the cage cross sections as rectangles, we
can only generate a box-like cage for a cylindrical branch of the

model, which might not be able to produce a high resolution, quad-
dominant cage via cage subdivision. In the future, we would like to
address it by modeling the cut slides as non-planar polygons.

5 Conclusion

In this paper, we have introduced an interactive cage generation ap-
proach given a single 3D model as the input. Our approach is capa-
ble of utilizing user-provided cut slides to generate results which are
comparable to artist-crafted cages. The resulting cages have nearly
rectangular cross sections with consistent orientations to avoid cage
twisting (§3.2). With a good convergence to the input model, the
resulting cages also bound the input model with a user-specified
tightness (§3.4).

Our interactive solution offers a significant saving of manual ef-
fort while it is still flexible enough to handle inputs with various
structures and topologies (§4). With very low time and memory
complexities, our solution can be easily integrated into modeling
and animation tools, making an important complement to many ex-
isting cage-based deformation coordinate generations.

The main limitations of our approach are due to the employment
of unbound, planar cut slides in our current approach. This may
limit the separability of the model and could initially create a self-
intersecting cage at certain unusual scenarios. To address such is-
sues, as the future work we plan to investigate the possible use of
non-planar cut slides (e.g., the curve networks used in [Takayama
et al. 2013]) as the user interaction. Lastly, open research problems
still exist in automated cage generation. For example, although
quite a few cage generation approaches have been proposed to date,
there does not exist a systematic or quantitative measure to quan-
tify the quality of cages in deformation applications. In order to
develop such quantitative measures, a rigorous user study for com-
paring cages by various methods would be needed.

Acknowledgements

The authors would like to thank Li Wei for useful discussion, and
thank anonymous SI3D reviewers for their constructive comments.
This research is supported in part by NSF IIS-1524782 and the Nat-
ural Science Foundation of China (NSFC) grant (No. 61328204).

References

ALLIEZ, P., TAYEB, S., AND WORMSER, C. 2015. 3D fast inter-
section and distance computation. In CGAL User and Reference
Manual, 4.7 ed. CGAL Editorial Board.

BEN-CHEN, M., WEBER, O., AND GOTSMAN, C. 2009. Spatial
deformation transfer. In SCA’09, ACM, 67–74.

CHEN, X., AND FENG, J. 2014. Adaptive skeleton-driven cages
for mesh sequences. Computer Animation and Virtual Worlds
25, 3-4, 447–455.

DENG, Z.-J., LUO, X.-N., AND MIAO, X.-P. 2011. Automatic
cage building with quadric error metrics. Journal of Computer
Science and Technology 26, 3, 538–547.

FITZGIBBON, A., PILU, M., AND FISHER, R. B. 1999. Direct
least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach.
Intell. 21, 5 (May), 476–480.

FLOATER, M. S., KÓS, G., AND REIMERS, M. 2005. Mean value
coordinates in 3D. Comput. Aided Geom. Des. 22, 7 (Oct.), 623–
631.

GARCÍA, F. G., PARADINAS, T., COLL, N., AND PATOW, G.
2013. *cages:: A multilevel, multi-cage-based system for mesh
deformation. ACM Trans. Graph. 32, 3 (July), 24:1–24:13.

GUENNEBAUD, G., JACOB, B., ET AL., 2015. Eigen v3.2.4.
http://eigen.tuxfamily.org.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE, O.
2011. Bounded biharmonic weights for real-time deformation.
ACM Trans. Graph. 30, 4 (July), 78:1–78:8.

JACOBSON, A., KAVAN, L., AND SORKINE-HORNUNG, O. 2013.
Robust inside-outside segmentation using generalized winding
numbers. ACM Trans. Graph. 32, 4 (July), 33:1–33:12.

JACOBSON, A., DENG, Z., KAVAN, L., AND LEWIS, J. 2014.
Skinning: Real-time shape deformation. In ACM SIGGRAPH
2014 Courses.

JACOBSON, A., PANOZZO, D., ET AL., 2015. libigl: A simple
C++ geometry processing library. http://libigl.github.io/libigl/.

JOSHI, P., MEYER, M., DEROSE, T., GREEN, B., AND
SANOCKI, T. 2007. Harmonic coordinates for character articu-
lation. ACM Trans. Graph. 26, 3 (July).

JU, T., SCHAEFER, S., AND WARREN, J. 2005. Mean value coor-
dinates for closed triangular meshes. ACM Trans. Graph. 24, 3
(July), 561–566.

JU, T., ZHOU, Q.-Y., VAN DE PANNE, M., COHEN-OR, D., AND
NEUMANN, U. 2008. Reusable skinning templates using cage-
based deformations. ACM Trans. Graph. 27, 5 (Dec.), 122:1–
122:10.

KNÖPPEL, F., CRANE, K., PINKALL, U., AND SCHRÖDER, P.
2013. Globally optimal direction fields. ACM Trans. Graph. 32,
4 (July), 59:1–59:10.

LI, X.-Y., JU, T., AND HU, S.-M. 2013. Cubic mean value coor-
dinates. ACM Trans. Graph. 32, 4 (July), 126:1–126:10.

LIPMAN, Y., LEVIN, D., AND COHEN-OR, D. 2008. Green coor-
dinates. ACM Trans. Graph. 27, 3 (Aug.), 78:1–78:10.

NIETO, J. R., AND SUSÍN, A. 2013. Cage based deformations: a
survey. In Deformation models. Springer, 75–99.

SACHT, L., VOUGA, E., AND JACOBSON, A. 2015. Nested cages.
ACM Transactions on Graphics (TOG) 34, 6, 170.

SAVOYE, Y., AND FRANCO, J.-S. 2010. Cage-based tracking for
performance animation. In ACCV 2010, vol. 3, 1903–1914.

SHAMIR, A. 2008. A survey on mesh segmentation techniques. In
Computer graphics forum, vol. 27, Wiley Online Library, 1539–
1556.

SI, H. 2015. Tetgen, a delaunay-based quality tetrahedral mesh
generator. ACM Trans. Math. Softw. 41, 2 (Feb.), 11:1–11:36.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible sur-
face modeling. In Proceedings of the Fifth Eurographics Sympo-
sium on Geometry Processing, SGP ’07, 109–116.

TAKAYAMA, K., PANOZZO, D., SORKINE-HORNUNG, A., AND
SORKINE-HORNUNG, O. 2013. Sketch-based generation and
editing of quad meshes. ACM Trans. Graph. 32, 4 (July), 97:1–
97:8.

THIERY, J.-M., TIERNY, J., AND BOUBEKEUR, T. 2012. Cager:
Cage-based reverse engineering of animated 3d shapes. Com-
puter Graphics Forum 31, 8, 2303–2316.

XIAN, C., LIN, H., AND GAO, S. 2012. Automatic cage genera-
tion by improved obbs for mesh deformation. The Visual Com-
puter 28, 1 (Jan.), 21–33.

YANG, X., CHANG, J., SOUTHERN, R., AND ZHANG, J. J. 2013.
Automatic cage construction for retargeted muscle fitting. The
Visual Computer 29, 5, 369–380.

