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ABSTRACT
Current crowd simulation progresses still fall short of simulating
many real-world collective behaviors. Arguably, one of the main
reasons is that some essential qualities of human beings such as
emotion have not been effectively modeled and incorporated into
crowd simulation algorithms. In this paper, we propose a novel
computational model for emotion evolution and demonstrate its
applications for crowd simulation. Specifically, our approach is
designed to tackle three major issues in the emotion evolution
process: (i) how to perceive and evaluate emotion when individuals
face emergency or external events, (ii) how to evolve the emotion
during induction, and (iii) how specific actions of individuals in a
crowd are impacted by emotion. Through many experiments, we
demonstrate that our method can effectively simulate emergent
dynamic collective patterns observed in real-world crowd footages.
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1 INTRODUCTION
Collective behavior is the spontaneous and unstructured move-
ment of a group of people when facing and responding to the same
event, stimulus, or influence. In particular, at certain scenarios col-
lective behaviors could turn into striking mass incidents (e.g., riots,
mobs, or panic evacuation) [Xu et al. 2014]. Therefore, modeling
and simulating collective behaviors under various scenarios is of
significant importance to many 3D and virtual reality applications,
including but not limited to entertainment, public safety, urban
planning, and emergency training. In the real-world, individuals in
a crowd constantly adjust their psychological and affective states
according to the dynamic change of environment. So, the collec-
tive behavior forming process is highly dynamic and unstructured,
which imposes significant challenges to realistically simulate such
behaviors.

Previously numerous works have been developed by introducing
physical mechanics and dynamics into crowd simulation, including
the well-known social force model [Helbing et al. 2000], synthetic
vision based model [Ondřej et al. 2010], and hierarchical crowd
simulation structure [Musse and Thalmann 2001]. Later, the concept
of fluid dynamics have been introduced to characterize pedestrian
flows at macroscopic level [Narain et al. 2009; Treuille et al. 2006].
Furthermore, velocity obstacles in robotics field was also introduced
into multi-agent navigation for simulating large-scale crowds [Guy
et al. 2009; Jur et al. 2008].

Sociological and psychological factors have also been exploited to
simulate realistic collective behaviors. For example, social cognition
behaviors and personality model have been introduced to simulate
heterogeneous crowd behavior [Durupinar et al. 2011; Guy et al.
2011; Kim et al. 2012; Pelechano and Badler 2006]. All these methods
employ fixed personality traits or response patterns for individuals,
without modeling the dynamic evolution of emotion of individuals
in a crowd.

Since “collective behavior" was originally coined by Robert E.
Park [1921], many theories on collective behaviors have been pro-
posed including the well-known emergent-norm theory [Turner
and Killian. 1993]. These theories emphasize that emotion plays a
vital role in forming collective behaviors. The early modern psy-
chology theory [Wundt 2010] assumes emotion is composed of
three dimensions. Several dimensional models of emotion have
been widely used in virtual agent modeling, including the two-
dimensional model of emotion (intensity and duration) [Le et al.
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2010], the OCC model and its variations [Durupinar et al. 2016;
Ortony et al. 1990], and the OCEAN model [Durupinar et al. 2011]
that simulates emotional mobs through the combination of psycho-
logical components.

In this paper, we draw insights from existing social psychology
and biological immune system studies to simulate how individuals
in a crowd deal with the dynamic changes of external environment.
Our main contribution is the modeling of emotion evolution in a
crowd and its influence on collective dynamic behaviors. Different
from assigning individuals with fixed personality traits or response
patterns as in previous methods (e.g., [Durupinar et al. 2011; Guy
et al. 2011; Kim et al. 2012]), the key rationale of our method is,
individual-specific emotion evolution drives the dynamic behaviors
and responses of individuals in a crowd. In our approach, we employ
Wundt’s three-dimensional emotion model [Wundt 2010] and our
approach is focused on modeling the evolution of emotion, while
all the existing works have not considered and modeled it for crowd
simulation.

2 OUR METHOD

Figure 1: The schematic illustration of our PEM (Perception,
Emotion, and Motion) model.

Our method is called the Perception, Emotion and Motion (PEM)
model, consisting of three main sub-models as described below.
Figure 1 illustrates the schematic view of our PEM model.

PerceptionModel: Individuals can perceive various induced events
in the environment, from simple accidents to complex social sit-
uation transforms (e.g., explosion, fire, and reaction of other indi-
viduals). Conceptually, the perception model establishes a bridge
between the external world and the internal states of individuals.

Emotion Model: By perceiving and appraising the events in the
environment, individuals’ emotions can be dynamically influenced.
This influence process takes both the perceived external events
and the internal states of the individuals into consideration. The
emotion evolution model introduced in this work is designed to
model the self-evolution of individuals’ emotions, as well as the
emotion inter-play among individuals.

Motion Model: The evolved emotion can take effect on the move-
ments of individuals, represented as the changes of orientation,
speed, position, etc. Meanwhile, individuals can adapt to the dy-
namically changing, external environment through the continuous

adjustment of their movements. In our approach, via a physically-
based crowd simulation model we can realistically simulate collec-
tive reaction behaviors under the influence of the evolved emotion.

2.1 Perception Model
The cognitive theory of emotion states that emotion is produced by
evaluation of stimulation or events [Scherer et al. 2001]. Specifically,
it can be interpreted as follows: stimulation is not the direct cause of
emotion experience; however, the stimulation needs to be evaluated
before the arousal of emotion.

First, we need to map an external stimulus into a quantized value
to describe an agent’s sensing on it. Specifically, we calculate the
average perceived intensity of an agent with respect to a particular
stimulus using the following intensity mapping function:

F =
T∑
0

Ms

4π (∆P )2
∆t . (1)

Here F denotes the radiation perceived by an agent,Ms denotes
the physical intensity corresponding to the source of the stimulus
such as the sound intensity, ∆P denotes the relative position from
an agent to the stimulus source, T denotes the time period which
the stimulusMs is applied, ∆t denotes the time step. Suppose that
the stimulus is radiated outward from a point source in a three-
dimensional space. According to the inverse-square law in physics,
a specified physical intensity is inversely proportional to the square
of the distance from the source of that physical intensity to an
agent.

As an example of F , the sensed acoustic intensity is attenuated
with the increase of the relative distance. Therefore, we can adapt
different stimuli or events to the intensity mapping function by
defining different source intensityMs , such as thermal radiation,
explosion, or other agents’ negative emotions.

Then, we further transform the calculated intensity of the stimu-
lus to the internal state of an agent. Despite the variety of stimuli in
the environment, Stevens reported that the psychological volume
arises in a direct proportion to a power function of the stimulation
volume [Stevens 1957]. According to the power law, we use the
following function to transform the stimulation intensity to the
strength of psychological induction of an agent.

S =

{
b (F − F0)

α , F > F0
0, F ≤ F0

(2)

Where S denotes the perceived psychological volume of an agent,
F denotes the calculated stimulation intensity, F0 denotes a user-
defined threshold, α denotes a power exponent that depends on
the type of stimulation, and b denotes a proportionality constant
determining the scale unit. In our simulation, we take b = 1.2 and
α = 0.33 under normal circumstances. These parameters will be ad-
justed with reference to the relevant research results in psychology
literature.

2.2 Emotion Model
In emotional activities, people not only accept the impact of external
events, but also regulate themselves to respond to the stimulation.
Emotion is caused by the evaluation to the stimulus event and the
feedback of the physical action. In this work, emotion evolution
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mainly focuses on how to define the emotional dimension of an
agent and the dynamic evolution process.

Figure 2: Three dimensions of the used emotion model

TheWundt’s emotion model [Wundt 2010] has three dimensions:
happy or not, excited or not, and nervous or not. Each specific
sentiment is distributed in different position of three dimensions
between the two poles. As illustrated in Figure 2, we define a three-
dimensional emotion space E <p=pleasurable or unpleasurable,
r=arousing or subduing, a=strain or relaxation>, where the range
of each dimension is [−1, 1]:

E =



ep
er
ea


(3)

Therefore, we can define a three-dimensional psychological vol-
ume I , which is computed by summing up individual psychological
volumes caused by different external stimuli, described below.

I =



Ip
Ir
Ia


=



∑
kpiωpiSi∑
kr iωr iSi∑
kaiωaiSi


(4)

where ωpi + ωr i + ωai = 1, and kpi ,kr i ,kai ∈ {1,−1, 0} denote
emotion coefficients, since we assume emotion fluctuation can be
positive, negative, or neutral under the influence of an external
stimulus.

On top of the above definitions, we model the evolution of in-
dividuals’ emotions. Inspired by the immune feedback system for
tracking control of a flexible micro-actuator [Kawafuku et al. 1999],
we introduce an emotional evolution model based on a similar
immune feedback mechanism.

Emotion reactivity is similar to the nature immune system. Specif-
ically, first, both the immune system and emotion reactivity are
responses to external stimuli; second, they are similar in terms of
their reaction process. In the biological immune system, T-cells
play a key role in immune response; Helper T-cell can activate
and Suppressor T-cell can inhibit the level of immune response for
foreign antigens. The human body also can adjust the secretion of
the brain’s monoamine neurotransmitters through the perception
of external stimuli. Different monoamine neurotransmitters can
facilitate or inhibit the body’s emotion and then ultimately regu-
late individual behavior; that is to say, depending on whether the
response achieves individual’s expectation, it will excite or inhibit
emotions and then drive individual to deal with external stimulus.

Thus, inspired by the above immune feedback mechanism, we de-
sign an emotional evolution model. Specifically, an agent’s emotion
is represented by the aforementioned three-dimensional Wundt’s

Figure 3: The proposed emotion evolution model

emotion model, and emotional evolution is described by a similar
immune feedback mechanism, as illustrated in Figure 3. When an
external event occurs, the human’s sensory organs are stimulated.
The stimulus is then transformed to an individual’s psychologi-
cal volume I , which further adjusts emotion through an emotion
controller c in our model. This controller contains the following
three parts: (i) a helper factor TH : an individual’s psychological
volume directly excites the fluctuation of emotion throughTH ; (ii) a
suppressor factorTS : individuals gradually adjust their emotions to
adapt to the external environment, and ultimately the emotions will
be gradually suppressed to maintain a proper balance; (iii) a self-
attenuation factor Ψ: Emotion will return gradually to the neutral
state after all external stimuli disappear.

Therefore, the emotion controller c can be defined as follows:

∆c = TH −TS − Ψ (5)

TH = k1I (6)

TS = k2h (∆R) I (7)

where k1 and k2 are weighting factors for TH and TS , respec-
tively; h (∆R) is a function introduced to describe an individual’s
adaptability to the environment (i.e., suppress emotional fluctua-
tions). We define h (∆R) as follows.

h (∆R) =
∑
i
ξi
|Ri (t − d ) − Ri (0) |

τi
(8)

where ∆R denotes the difference between the behavior parame-
ters at time (t − d ) and the original parameters, five-dimensional
variable R is described by Equation 13, τi is the normalizing factor,
which equals to the maximum value of parameter i , and the weight-
ing vector ξi is empirically set to [0.1, 0.1, 0.2, 0.3, 0.3]. Interacting
with two primary feedback mechanisms, including the activation
mechanismTH and the inhibition mechanismTS , an individual can
respond to external environmental stimuli very quickly.
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Emotion has the characteristic of self-attenuation. In this work,
we approximate the decaying curve of emotion as an exponential
curve [Marreiros et al. 2010] and the function is defined as follows:

Ψ = et exp (−λ∆t ) (9)
where et denotes the current emotion at time t , λ denotes the

decaying rate, which is set to 3.0 in our experiments, and ∆t denotes
the time step.

If we further simplify the formula ∆c in Equation 5, we can have:

u = TH −TS

= k1I − k2h (∆R) I

= K (1 − ηh (∆R)) I

= Kp I

(10)

where K = k1 and η = k2/k1, taking K = 0.8 and η = 0.1.
The emotion controller c can be simplify described as a combi-

nation of external stimuli and self-attenuation.

∆c = u + Ψ = Kp I + Ψ (11)
Finally, the mathematical expression of one dimension of an

individual’s emotion (refer to Equation 12), e , can be described as
follows:

et+1 =



1, et + ∆c > 1
et + ∆c, −1 ≤ et + ∆c ≤ 1
−1, et + ∆c < −1

(12)

(a) without emotion

(b) with emotion, without emotion contagion

(c) with emotion, with emotion contagion

Figure 4: Snapshots of our simulation experiments for vali-
dating the “more haste less speed" phenomenon

2.3 Motion Model
Under normal situations, individual behaviors in a crowd are im-
pacted by their own conscious emotions, and they typically are
not impetuous or excited. However, when people are stimulated
by external events such as emergency, they could become irritable
and unbounded. For example, when earthquake comes, people will
typically attempt to escape to any open space from the current
location as soon as possible. Their actions are often fast and radical.

These collective behaviors will inevitably lead to a stampede all of
a sudden.

Emotional impact on human behavior needs to be reflected on
the physical movement of the crowd at the end. Therefore, we define
a transfer matrix for behavior parameters, and different emotions
will be reflected through different behavior parameters. In this
work, five behavior parameters are affected by emotion, including
neighbor distance, max neighbors, planning time horizon, agent
radius, and max speed. Therefore, a five-dimensional variable R
that contains these behavior parameters is defined as follows:

R =



rneiдhbordist
rmaxneiдhbors
rt imehor izon

rradius
rmaxspeed



(13)

The transfer relationship between emotion and behavior param-
eters is established as follows:

Rt+1 = A ∗ E + Rt , (14)
where

A =



−5.03 5.14 −5.16
−5.4 5.58 5.84
−5.22 5.31 5.32
0.15 −0.28 −0.36
0.49 −0.21 −0.57


denotes a 5 × 3 empirically-defined, transfer matrix contain-

ing the impact factors of different parameters, E denotes a three-
dimensional emotion space (refer to Equation 12), and Rt denotes
an agent’s motion parameters at time t . We calculate each agent’s
emotion before the simulation at each step, and then we use it to
update the agent’s behavior parameters.

2.4 Simulation
Based on the above layered architecture, we can straightforwardly
incorporate our hierarchical emotion evolution model to existing
agent-based models [Helbing et al. 2000; Reynolds 1987; RVO2
2017]. In this work, we choose the RVO model [RVO2 2017] for
our experiments due to its high efficiency for real-time multi-agent
navigation. Also, in the RVO model, each agent navigates indepen-
dently without explicit communication with other agents. It can
guarantee safe and oscillation-free motions for each agent.

3 EXPERIMENT RESULTS
To test our model, we have conducted various simulation experi-
ments and comparisons, detailed in this section. The configuration
of the experimental computer in all of our experiments is: Intel(R)
Xeon(R) E5-1620, and 8GB memory. For the animation results of all
our experiments, please refer to the accompanying demo video.

3.1 Emotional Contagion Experiments
In order to test the effects of emotion and emotional contagion on
pedestrian dynamics by our method, we built a classic evacuation
scene as shown in Figure 4. With the same scene, we conducted
three simulations with different social psychological settings: (a)
without emotion; (b) with emotion, without emotion contagion; and
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Figure 5: Evacuation times of three different conditions

(a) The initial stage

(b) An intermediate stage

(c) The final stage

Figure 6: Comparisons between the SFMmodel (left) and our
model (right)

(c) with emotion, with emotion contagion. The essential difference
among the three experiments are: (i) whether those red agents
in Figure 4 are emotional, and (ii) whether emotion is contagious
among the agents.

As shown in Figure 4 (also refer to the accompanying demo
video), those emotional (red) agents can evacuate quickly by jostling
or pushing other agents. However, as shown in Figure 4(c), they
arouse the tension emotion of most of the other agents; as a result,
most of the agents in the scene jostle each other for better positions.
At the end, the experiment with both emotion and emotion conta-
gion (Figure 4(c)) took the longest evacuation time, as illustrated
in Figure 5. The experiment without emotion (Figure 4(a)) needs
slightly more time than the experiment with emotion but without
emotion contagion (Figure 4(b)), because all the agents (include
those emotional agents) in Figure 4(a) move in their normal paces

since they are not affected by any emotion. By contrast, the exper-
iment with emotion but without emotion contagion (Figure 4(b))
took the least time, although other agents (except those emotional
agents) in Figure 4(b) still move in their normal paces since they are
not affected at all by the emotional agents, but the emotional agents
can compete with other individuals for better positions (Figure
4(b)). This suggests that a certain level of jostling or pushing by
some agents could help to reduce the total evacuation time. In the
experiments, stimulated crowds lead to a classic disorder evacua-
tion scene, and their evacuation time would be substantially longer
than normal cases, where all the agents move in their regular paces
without panic emotion.

3.2 Comparison with SFM-based Evacuation
We also compared our model with the well-known Social Forces
Model (SFM) for panic evacuation. In the SFM model, its original
authors present a panic model and simulate a test scene in which
pedestrians attempt to leave a smoky room with only one exit
[Helbing et al. 2000]. Each individual has to follow a mixture of
his/her intended direction and the average direction of its neighbors
within a certain radius. We tested the same evacuation scene (i.e., a
similar smoky room) using both our model and the original SFM
model, and the comparison results are shown in Figure 6 as well
as the accompanying demo video. From the comparison results,
we can see that our model can produce more natural collective
behaviors than the SFM model due to its simulation of emotion
spreading.

3.3 Comparisons with Real-world Evacuations
We also tested the effectiveness of our model by comparing its
simulation results with some video footages of real-world crowds.
We selected four real-world video footages to cover three typical
group behaviors in real world, including expressive crowds, casual
crowds, and acting crowds, detailed below. It should be noted that
such comparisons are very challenging, since it is infeasible for us
to accurately reproduce the actual 3D environments in the video
footages, and it is also difficult to determine the exact number of
people and their locations in the scene. However, as described below,
our method can reasonably simulate and characterize the group
behaviors of different categories of crowds in the selected video
footages (refer to the accompanying demo video).

The 1st row of Figure 7 shows the experiment result of an expres-
sive crowd. In this scenario, a big crowd of fans and other people are
in the arrival gate of an airport. When the celebrity comes out, the
fans surround the celebrity immediately. We built a similar scene
to simulate this crowd. We can see that the agents automatically
form a dynamic circle-like shape, and the formed circle of agents is
jammed inside but loose on the periphery just like what is shown
in the video footage.

The 2nd row of Figure 7 shows the simulation result of a casual
crowd. Specifically, a passenger’s cell-phone was flaming in a sub-
way train, and this makes passengers fermented, trying to escape
from the train as soon as possible. People close to the passenger
with the flaming cell phone are the first group who attempt to
escape from the train and others follow on. From our simulation
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result, we can see that our model is able to effectively simulate such
an emergency evacuation effect.

The 3rd row of Figure 7 shows the simulation result of an acting
crowd. In this crowd, police are at one side of the scene to form a
human wall in order to disperse demonstrators. When the polices
are gradually approaching the demonstrators, strain are placed
on the latter and the latter start to retreat. In addition, when the
polices throw smoke bombs into the demonstrators, a new stimulus
event occurs. From this point, the demonstrators are subject to
multiple stimuli; they have to further accelerate the escaping under
terrible strain. In our simulation result, the demonstrator agents
start to escape from the scene when police agents are approaching
them. When an additional stimulating event such as the explosion
of a smoke bomb happens, the demonstrator agents speed up the
escaping from the scene, which is in line with what happened in
the video footage.

The 4th row of Figure 7 shows the simulation result of a second
acting crowd. In this crowd, a large number of subway passengers
jam in the door, waiting for the arrival of the subway. Because the
outside passengers block the door and want to enter the compart-
ment as soon as possible, passengers within the subway need to
forcefully squeeze out the door when the subway arrived. From our
simulation result, we can see that our model can soundly reproduce
the very congested scene.

Figure 7: Comparisons between real-world video footages
and simulation results by our approach: an expressive crowd
(1st row), an casual crowd (2nd row), an acting crowd (3rd
row), and a second actin crowd (4th row). The left most
panel in each row shows a screenshot of the recorded video
footage.

4 DISCUSSION AND CONCLUSION
In this paper we present a novel model for simulating crowd behav-
iors when facing external stimuli based on the core idea of emotion

evolution. In particular, our method focuses on the modeling of
emotion evolution with the context of a crowd and its influence on
group behaviors. We have conducted a variety of simulation exper-
iments as well as comparisons, and we show that our approach can
effectively simulate emergent dynamic collective patterns, includ-
ing challenging comparisons with real-world crowd video footages.

ACKNOWLEDGMENTS
This work was in part supported by the National Key Technology
R&DProgram of China (Grant No. 2017YFB1002600, 2015AA016405),
theNatural Science Foundation of China (Grant No.61532002, 61272322,
61472370 and 61672469), the Open Project of Key Laboratory (BUAA-
VR-16KF-07, CT16K01 and JL16K02), Beijing Natural Science Foun-
dation (L172049), and the US National Science Foundation (IIS-
1524782).

REFERENCES
F. Durupinar, U. Gudukbay, A. Aman, and N. I. Badler. 2016. Psychological Parameters

for Crowd Simulation: FromAudiences toMobs. IEEE TVCG 22, 9 (2016), 2145–2159.
F Durupinar, N Pelechano, J. M. Allbeck, U Gudukbay, and N. I. Badler. 2011. How the

Ocean personality model affects the perception of crowds. IEEE CG&A 31, 3 (2011),
22–31.

S.. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin, D. Manocha, and P. Dubey. 2009.
ClearPath: Highly Parallel Collision Avoidance for Multi-Agent Simulation. In
SCA’09. 177–187.

S. J. Guy, S. Kim, M. C. Lin, and D. Manocha. 2011. Simulating heterogeneous crowd
behaviors using personality trait theory. In SCA’11.

D. Helbing, I. Farkas, and T. Vicsek. 2000. Simulating dynamical features of escape
panic. Nature 407, 6803 (2000), 487–490.

V. Den B. Jur, M. Lin, and D.Manocha. 2008. Reciprocal Velocity Obstacles for Real-Time
Multi-Agent Navigation. In ICRA’08. 1928–1935.

M. Kawafuku, M. Sasaki, and K. Takahashi. 1999. Adaptive learning method of neural
network controller using an immune feedback law. In Proc. IEEE/ASME Int’l Conf.
on Advanced Intelligent Mechatronics. 641–646.

S. Kim, S. J. Guy, D. Manocha, and M. C. Lin. 2012. Interactive simulation of dynamic
crowd behaviors using general adaptation syndrome theory. In SI3D’12. 55–62.

V. M. Le, C. Adam, R. Canal, B. Gaudou, H. T. Vinh, and P. Taillandier. 2010. Simulation
of the Emotion Dynamics in a Group of Agents in an Evacuation Situation. PRIMA’10
(2010), 604–619.

G. Marreiros, R. Santos, C. Ramos, and J. Neves. 2010. Context-Aware Emotion-Based
Model for Group Decision Making. IEEE Intelligent Systems 25, 2 (March 2010),
31–39.

S. R. Musse and D Thalmann. 2001. Hierarchical model for real time simulation of
virtual human crowds. IEEE Transactions on Visualization and Computer Graphics
7, 2 (2001), 152–164.

R. Narain, A. Golas, S. Curtis, and M. C. Lin. 2009. Aggregate dynamics for dense
crowd simulation. ACM TOG 28, 5 (2009), 89–97.

J. Ondřej, J. Pettrě, A. H. Olivier, and S. Donikian. 2010. A synthetic-vision based
steering approach for crowd simulation. ACM Transactions on Graphics 29, 4 (2010),
157–166.

A. Ortony, G. L Clore, and A. Collins. 1990. The cognitive structure of emotions.
Contemporary Sociology 18, 6 (1990), 2147–2153.

R. E. Park and E. W. Burgess. 1921. Introduction to the Science of Sociology. University
of Chicago Press, Chicago.

N. Pelechano and N.I. Badler. 2006. Modeling Crowd and Trained Leader Behavior
during Building Evacuation. IEEE CG&A 26, 6 (Nov 2006), 80–86.

C. W. Reynolds. 1987. Flocks, Herds And Schools: A Distributed Behavioral Model. In
Proc. of ACM SIGGRAPH ’87. 25–34.

RVO2. 2017. http://gamma.cs.unc.edu/RVO2/. (2017).
K. R. Scherer, A. Schorr, and Tom Johnstone. 2001. Appraisal processes in emotion:

Theory, methods, research. Oxford University Press (2001).
S. S. Stevens. 1957. On the psychophysical law. Psychological Review 64, 3 (1957),

153–181.
A. Treuille, S. Cooper, and Z. Popovic. 2006. Continuum crowds. Acm Transactions on

Graphics 25, 3 (2006), 1160–1168.
R. H. Turner and L. M. Killian. 1993. Collective Behavior (4th ed. ed.). Englewood Cliffs,

N.J. :Prentice-Hall.
W.M.Wundt. 2010. Outlines of Psychology. (1897). In: Classics in the history of psychology.

York University, Toronto.
M. Xu, H. Jiang, X. Jin, and Z. Deng. 2014. Crowd simulation and its applications:

Recent advances. Journal of Computer Science and Technology 29, 5 (2014), 799–811.


	Abstract
	1 Introduction
	2 Our Method
	2.1 Perception Model
	2.2 Emotion Model
	2.3 Motion Model
	2.4 Simulation

	3 Experiment Results
	3.1 Emotional Contagion Experiments
	3.2 Comparison with SFM-based Evacuation
	3.3 Comparisons with Real-world Evacuations

	4 Discussion and Conclusion
	Acknowledgments
	References

