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Low-level Characterization of Expressive Head
Motion through Frequency Domain Analysis

Yu Ding?, Lei Shi?, and Zhigang Deng+, Senior Member, IEEE

Abstract—For the purpose of understanding how head motions contribute to the perception of emotion in an utterance, we aim to
examine the perception of emotion based on Fourier transform-based static and dynamic features of head motion. Our work is to
conduct intra-related objective analysis and perceptual experiments on the link between the perception of emotion and the
static/dynamic features. The objective analysis outcome shows that the static and dynamic features are effective in characterizing and
recognizing emotions. The perceptual experiments enable us to collect human perception of emotion through head motion. The
collected perceptual data shows that humans are unable to reliably perceive emotion from head motion alone but reveals that humans
are sensitive to the static feature (in reference to the averaged up-down rotation angle) and the dynamic features (which reflect the
fluidity and speed of movement). It also indicates that humans perceive emotion carried in head motion and the naturalness of head
motion in two different channels. Our work contributes to the understanding and the characterization of head motion in expressive
speech through low-level descriptions of motion features, instead of commonly used high-level motion style (e.g. head nods, shakes,
tilts, and raises).

Index Terms—Human Behavior, Head Motion, Expression, Emotion, Conversation, Frequency-domain, Discrete Fourier Transform.
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1 INTRODUCTION

A large amount of research efforts have been devoted to the
understanding of expression and the perception of emotion
through nonverbal behaviors, including facial expression,
head motion, and hand gesture. Most works rely on stylized
motions to examine the emotional information carried in
nonverbal behaviors. For example, facial expression is often
regarded as the coordination of a few basic motions called
Action Units (AUs), each of which describes the contraction
of a basic muscular unit [1]. For instance, sadness can be
displayed through the combination of AU1 (Inner Brow
Raiser), AU4 (Brow Lowerer), AU15 (Lip Corner Depressor),
and AU23 (Lip Tightener). In fact, numerous works have
been developed to recognize AUs to automatically detect
emotion. Head backward may transmit anger, surprise, and
fear while head forward may link with sadness [2]. Arms’
rising or stretching out to the front may be used to express
joy [2]. The above behavioral descriptions rely on a pre-
defined set of stylized or basic motions.

Recently, with the increasing availability of high-quality
mocap data, various subtle and complex motion trajectories
are captured. This may result in that a set of stylized motions
may be inadequate to describe the diversity of mocap data
and to characterize the subtlety of mocap behavioral data.
On the other hand, some existing studies show that human
behavioral expressions linking to the same emotion category
share generally a core set of action-independent features [3]
[4]. For example, the speed of knocking motion predomi-
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nantly affects the intensity of activation in the perceived af-
fect [5]. Sadness is displayed through slow body movements
[6]. The work of [7] studies the characterization of body
expressions of 8 emotions across 7 daily actions (e.g., lifting
and throwing an object with one hand). The body motion
is characterized by 8 body cues including power, fluidity,
speech of movement, etc. In addition to the above works
on emotional body expression, another work of [8] aims
at portraying personality for virtual character by defining
low-level parameters to effectively characterize behavioral
dynamics including space (indirect vs. direct), weight (light
vs. strong), time (sustained vs. sudden) and flow (free vs.
bound). The works mentioned above made efforts on ex-
ploring action-independent features. Hence, there is a clear
need of creating an action-independent model of how affect is
expressed rather than building a recognition system for each type
of action [9], which relies on motion characterization instead
of action detection.

To the best of our knowledge, few previous efforts
have been focused on the characterization of emotional
head motion. Most existing works employ the temporal 3-
dimensional rotation angles to characterize head motion.
Moreover, the work of [10] describes head motion in an ut-
terance with the means, the standard deviations, the ranges,
the maximums and the minimums of 3-dimensional rota-
tion angles. However, these proposed features may not be
intuitively linked with the perception of emotion and could
not further explain how head motions affect the perception
of emotion.

Our work aims to explore the low-level characterization
of head motion in expressive speech and to further under-
stand meaningful head motion cues linked to the perception
of emotion. The characterized cues are not limited to any
specific high-level types of head motion (e.g. head nodding
and shakes). They can be used to describe any head motion



2

in a low-level. Indeed, in addition to head nodding and
shakes, other categories of head motions are also helpful
to transmit emotional information [11].

As the first step, our work employs the dynamic features
estimated through Fourier transform as well as the static
feature called the direct current component (see Section 3)
to characterize head motions and to study their link with
emotion perception. This work relies on a mocap dataset
recording head motion data and the simultaneous expres-
sive speech, which allows us to quantitatively analyze head
motion in utterances. Our study also relies on a human-
like virtual character driven by human motion data with or
without manipulation, which allows us to characterize and
quantify emotion perception through head motion.

To achieve the above goal our study is dedicated to the
objective analysis and the perceptual understanding of the
static and dynamic features of head motion in expressive
speech. In the objective analysis, machine learning algo-
rithms are employed to recognize emotion type from the
static and dynamic features of head motion. The recognition
accuracies suggest that the static and dynamic features pro-
vide a promising characterization of expressive head motion
and that they may carry meaningful emotion information.
The perceptual experiments are to explore perceptual as-
pects of emotional information carried in the static and
dynamic features.

The main contributions of our study consist in an
exploration of the action-independent characterization of
head motion in expressive speech and an experimentally-
grounded explanation of how humans perceive and decode
emotions embodied in head motions.

2 BACKGROUND

Previously, a few works have been dedicated to the auto-
matic generation of head motion based on expressive speech
[10] [12]. Although the produced head motions are able
to transmit appropriate emotions, the use of 3-dimensional
rotation angles in their works cannot allow us to understand
how emotional information is encoded into head motions
and how head motions are perceived by humans. In the
previous works, head motion is usually featured by a tem-
poral sequence of three head rotation angles at each time
frame. While three head rotation angles describe the spatial
position of the head at each time frame, humans may not
be able to intuitively correlate a static spatial position of the
head with emotion in an utterance.

In the above works [10] [12], a short utterance lasting
for several seconds is labeled by one emotion state. This
suggests that the emotion may be stable within a short
utterance. To find out the correlation between head motion
and the emotion state in a period of a few seconds, the
temporal head rotation angles at each time frame may
be inappropriate. Therefore, a research question naturally
comes up: Can we characterize head motion with stable features
which are invariant in an utterance to reflect the emotion state?

In our study, we use the cues of the static and dynamic
features to represent head motion, as these cues have the
nature of stability in a lasting period. They could be a sound
candidate to reflect the emotion state in an utterance. To
explore the link between these cues and the emotion state,

temporal head rotation angles are transformed into a set of
static and dynamic features using Fourier Transform.

3 RELATED WORK

This section briefly describes Discrete Fourier Transform
(DFT) and then reviews previous works on human motion
data processing using DFT. Next, we will describe previous
works that explicitly consider emotional information to
investigate head motion.

3.1 Discrete Fourier Transform
DFT has been widely used in signal processing community.
It is able to decompose a one-dimensional temporal signal
into a Direct Current (DC) component and a series of har-
monically related sinusoidal components, which allows us
to view a temporally-based sequence in a frequency-based
domain. Assuming that a temporal sequence, L, consists of
T values at T time frames with its sampling rate of fs, L
is represented as L = [l1, l2, ..., lt, ..., lT ]. Using DFT, L is
described as the sum of the DC component and a series
of harmonically related sinusoidal components, which is
represented as lt = A0 +

∑N
n=1An sin(2π · n · f0 · t+ φn).

A0 is the DC component referred to as the averaged value
of the temporal sequence. n is the index of s from 1 to N ;
andN is the largest integer no more than T

2 , denoted by [T2 ].
An sin(2π ·n ·f0 ·t+φn) refers to as the n-th sinusoidal com-
ponent. sin represents the sinusoidal function. An and φn
stand for the amplitude and the phase of the n-th sinusoidal
component, respectively. The n-th sinusoidal component is
a curve of sinusoidal signal with a frequency of n · f0. f0 is
defined by fs

T and referred to as the fundamental frequency.
The N -th sinusoidal component has the highest frequency
of fs

2 (= N · f0 = T
2 ·

fs
T ). For instance, if fs is 30Hz, N is 15

(= fs
2 ) and fN is 15Hz (= 30

2 ).

3.2 Discrete Fourier Transform for Human Motion
Several works have applied DFT to explore human motion
data including head movement, walking motion, and shoul-
der vibration, which are briefly reviewed as follows. The
work of [13] has employed DFT to analyze head rotation
during walking and running. Their work shows that pre-
dominant frequencies of horizontal and vertical rotations
are all within a 0.6-8.2Hz range and that the predominant
frequency of the pitch rotations is at least twice that of
the yaw rotations during walking or running. Azuma and
Bishop [14] have attempted to eliminate or reduce the effects
of system delay in Head-Mounted Display systems. They
made an effort to characterize head-motion using DFT. They
take the advantage of frequency signals to quantify the
”jitter” often occurring in predicted signals. Ma et al. [15]
shows that the head motions with high frequencies more
than 12Hz are more likely perceived as unnatural. Their
work suggests that the natural head motion is in the range
between 0Hz-12Hz. Tilmanne and Dutoit [16] reported that
the dynamic features with low frequencies are predomi-
nantly observed in most styles of walking and that the
other dynamic features with higher frequencies play a more
important role in stylistic walking than in normal walking.
Their work shows that various styles differ from each other
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in the profile of the dynamic features. Niewiadomski et al.
[17] employ DFT to separate torso leaning and shoulder
vibration from human data captured with two markers on
the top of two shoulders, which is driven by the shoulder
and torso motions. In their work, torso leaning and shoulder
vibration cannot be directly obtained from motion cap-
ture data, while they are distinguishable in the frequency-
domain.

3.3 Head Motion in Emotion Perception
Several works [10] [12] explicitly take into account the
emotional information when studying head motion with
speech. The two works attempt to produce human-like
head movements from provided speech input. The work
of [10] explicitly utilizes the type of emotion as the input
complementary to the given speech. The other work [12]
validates the synthesized head motion data by explicitly
taking into account its expressiveness of emotion. However,
their works are not focused on understanding how head
motions are linked to the expressiveness of emotion. Our
work is to explore the relationship between head motion
and, the expressiveness and the perception of emotion.

Other works have been dedicated to the study of the
uni-modality of head motion in the perception of complex
emotion, which typically does not occur in an utterance
and is not related to expressive speech. For instance, the
work of [11] demonstrated that the emotional information in
head motion is complementary rather than redundant to the
emotional content in facial expressions and that emotional
expressibility of head motion is not limited to nodding and
shakes but also other gestures such as head tilts, raises,
etc. Moreover, the work of [18] shows that a raised head
is correlated to happiness and ’superiority emotions’ (e.g.
pride, contempt), a bowed head is associated with ’inferi-
ority emotions’ (e.g. guilt, humiliation). The work of [19]
shows that the head raised 15-20 degrees encourages the
recognition of pride. The work of [20] reported that head
position strongly affects the reaction to both anger and fear.

4 DATA ACQUISITION AND PROCESSING

(a) pitch (b) roll (c) yaw

Fig. 1: Illustration of three-dimensional head rotation angles.
The rotation angles are displayed with a human-like virtual
character [21].

Our study relies on a human audiovisual dataset which
collects the audiovisual expression data from a professional
actress. The collection was performed in a laboratory setting.
To record the utterance audio signals, the actress wore a
close talking SHURE microphone with a 48k(Hz) sampling
rate. She was equipped with a mocap system that captures
3-dimensional head rotation angles (see Figure 1) and fa-
cial expressions at 120Hz. In our work, DFT is applied to
decompose each dimension of the captured temporal head

rotation angles into the DC component called the static
feature in our work, denoted by s, and a series of sinusoidal
components. The amplitude of a sinusoidal component is
viewed as a dynamic feature, denoted by d. According to
the description of DFT in Section 3.1, N stands for the total
number of sinusoidal components and it is valued at [T2 ] for
each utterance, where T is the length of the utterance. The
N -th sinusoidal component has the highest frequency at fs

2 ,
where fs is the sampling frequency of the motion capture
data.

In our dataset, the original value of fs is 120Hz. It
means that 60Hz ( fs2 ) would be the highest frequency in the
dynamic features extracted with DFT. On the other hand, the
work of [15] has demonstrated that natural head motion is
likely to be lower than 12Hz and that the head motions with
frequencies more than 14Hz may lead to the perception of
unnaturalness. This suggests that the human head moves
probably with the frequencies lower than 12Hz or 14Hz
and that head motions with higher frequencies may occur
rarely. Moreover, video at 30Hz is able to adequately meet
the requirement of human visual continuity [22]. Inspired
by the works of [15], [22], our captured head motion data is
down-sampled to 30Hz accordingly. Then, each dimension
of the head motion is further decomposed into s and a
series of sinusoidal components with the highest frequency
of 15Hz, which is slightly higher than 14Hz.

Considering that the motion capture data is collected
from an actress who uttered towards the cameras in front
of her, she could be assumed to be speaking in a two-party
conversation. In a two-party conversation, the bias to right
in yaw/roll rotation may lead to the same influence as that
to left. As the first step, the current work focuses on the static
feature of pitch rotation only (see Figure 1); the yaw and
roll rotations are not investigated in our work. Particularly,
sp stands for the static feature of pitch rotation. All the
acronyms/abbreviations used in this paper are summarized
in Table 1.

5 OBJECTIVE ANALYSIS

To learn more about the role of head motion in the ex-
pressiveness of emotion, objective analysis is carried out
first. Similar to the work of [10], head motions are used to
recognize the emotion of neutral, sadness, happiness, and
anger. Different from [10], we utilize the static and dynamic
features to characterize head motions. If the static and
dynamic features result in a validated recognition accuracy,
they would be useful features to characterize head motions
with emotional information.

As introduced in Section 3, an angle stream with the
length of T is decomposed into s and [T2 ] sinusoidal com-
ponents. Then, 15 representative sinusoidal components are
picked out and their amplitudes are viewed as the dynamic
features, denoted by d1∼15 = [d1, d2, ..., d15], for each ut-
terance. d1∼15 are respectively extracted from the 15 non-
overlapping frequency intervals with the width of 1Hz in
the range from 0Hz to 15Hz. di, i = 1, ..., 15, has the peak
with the maximum amplitude in the interval from (i − 1)
Hz to i Hz, which is done similarly in the works of [16],
[17]. In particular, we use dpi /dyi /dri to denote di in terms
of pitch/yaw/roll rotation. Moreover, dpi1∼i2 is defined as a



4

Fig. 2: The confusion matrices of the averaged accuracies of emotion recognition based on the static and dynamic features.
The four confusion matrices report the accuracies of the four classifiers, respectively. Each confusion matrix reports the
accuracies averaged over 50 experiments, which is characterized by the gray level and also the percentage.

Fig. 3: The 95% confidence intervals of the recognition accuracies of the four classifiers. The dash lines highlight the chance
level of recognition accuracy.

TABLE 1: Notation and Acronyms

Acronym Definition
DC Direct Current (component)
fs signal sampling rate
sp/s the static feature of head pitch rotation
di the i-th dynamic feature in the i-th interval from

(i-1)Hz to i Hz
dpi /dyi /dri di in terms of pitch/yaw/roll rotation.
dlo/din/dhi the square root of 3D rotation angles.
sd a concatenated vector of the static feature and the

dynamic features
LF/IF/HF low/intermediate/high frequency
gdLF the dynamic features with low frequency, referring

to smooth-and-slow movement
gdIF the dynamic features with intermediate frequency,

referring to moderate-fluidity-and-speed movement
gdHF the dynamic features with high frequency, referring

to jerky-and-fast movement
gs the still-frame movement, referring to sp
gor the original motion, referring to the sum of the

above four groups of gdLF , gdIF , gdHF and gs
US-M User Study on Perception of Motion Modality
US-Sta User Study on Perception of Static Motion
US-Dyn User Study on Perception of Dynamic Motions
Ms/Mh the uni-modality of speech/head motion
Mhs the bi-modality of head motion and speech
Cor

s /Cor
h Cond. of Ms/Mh with original head motion data

Cor
hs Cond. of Mhs with original head motion data

CLF∩S the rest by removing gdLF and gs from gor

CIF∩S the rest by removing gdIF and gs from gor

CHF∩S the rest by removing gdHF and gs from gor

CS the rest by removing gs from gor

set of dpi with i ranging from i1 to i2; dyi1∼i2 and dri1∼i2 are
similarly defined. Finally, a concatenated vector, denoted by
sd, is built for each utterance, including the 46 elements
of dp1∼15, dy1∼15, dr1∼15, and sp. {sd} denotes the set of sd,
which is collected from all the utterances in the dataset.

Our objective analysis relies on the collected set of {sd}.
To explore whether the static and dynamic features are asso-
ciated with the emotional information, we build four classi-
fiers separately to perform emotion recognition on {sd}, in-
cluding Linear Discriminant analysis(LDA), Quadratic Dis-
criminant Analysis(QDA), Random Forests (RF), and Sup-
port Vector Machine (SVM). In our experiments, the solver
of LDA is singular value decomposition; RF consists of ten
trees and takes Gini coefficient as the criterion to measure
the quality of a split; SVM takes Radial Basis Function kernel
as its kernel function.

Experiments: In each experiment, {sd} is randomly split
into 80% for training and 20% for testing, and each classifier
performs a four-class classification. As mentioned above,
four classifiers are respectively employed in our experi-
ments. In total, {sd} is randomly and independently split
50 times, each of which is used to conduct one experiment.
Hence, 50 experiments are carried out with each classifier.
Figure 2 reports the resulting confusion matrix that provides
the averaged recognition accuracies over the 50 experiments
for each classifier. To test whether the recognition accuracies
are statistically higher than the chance level (25%, one out
of four), the 95% confidence interval [23] of recognition ac-
curacy is calculated for each emotion and for each classifier,
reported in Figure 3.

Results: Figure 2 shows that the recognition accuracies
of the four emotions are not identical. For example, while
the recognition accuracy of neutral is in a range from 90%
to 92% with the four classifiers, the recognition accuracy is
from 60% to 79% for sadness, from 50% to 57% for happi-
ness, and from 51% to 72% for anger. The highest accuracy
for neutral, sadness, happiness, and anger is 92%, 79%, 57%
and 72% among the four classifiers. Viewing the perfor-
mances of the four classifiers, the averaged recognition ac-
curacy is always higher than the chance level (25%), which
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is validated by the 95% confidence intervals of recognition
accuracy reported in Figure 3. In particular, it is observed
that the recognition accuracy of neutral is higher than that
of the other three emotions. On the other hand, Table 2
reports the 95% confidence intervals of error rate which are
calculated based on the performances of the four classifiers.
The results show that happiness is recognized as anger with
the confidence interval from 14.7% to 26.3% and that anger
is recognized as happy with the confidence interval from
15.6% to 27.4%. These two interval confidences contain the
chance level of 25%; and the other ones are below the chance
level. In other words, the confidence intervals of error rate
are always no more than the chance level. The above results
verify that the static and dynamic features can be used
to characterize head motion and to recognize the type of
emotion.

Exploratory Study (OB-Ex): The above objective ex-
periments show the static and dynamic features provide
important clues to identify emotion carried in head motion.
We are aware that the promising recognition accuracy may
be attributed to all the static and dynamic features or to
a portion of them (e.g. only the static feature or a portion
of the dynamic features). To figure it out, we validate the
differences among the four emotions in the static and dy-
namic features. For example, if a significant difference in the
static feature is validated, the static feature can be viewed
as an important clue for emotion recognition; otherwise it is
considered insignificant for emotion recognition.

(a) s (b) dlo

(c) din (d) dhi

Fig. 4: Kruskal Wallis test results on the static feature (s), the
dynamic features with low, intermediate, and high frequen-
cies (dlo, din, and dhi). The error bars indicate the standard
deviations. The Kruskal Wallis test results show that there
is a significant difference among the four emotions for each
feature.

During the validation, the Kruskal Wallis test for the
difference among the four emotions is not performed for the
46 static and dynamic features. For the sake of simplicity,
we calculate the square root of the 3-dimensional rotation
angles at each time frame, and then use DFT to decompose
the sequence of square root for each utterance into a static
feature and a series of dynamic features with the lowest
frequency of fs

T and the highest one of 15Hz (see Section
3). Finally, 4 representative static and dynamic features are
selected including the static feature denoted by s, a low-

TABLE 2: The 95% confidence interval of error rate (%).
The confidence intervals containing the chance level (25%)
are highlighted with gray and the other ones are below the
chance level.

Neu Sad Hap Ang

Neu - [1 7] [0.5 6] [-0.5 3]

Sad [7.2 16.8] - [8.9 19.1] [2.8 10.2]

Hap [4.4 12.6] [13.1 24.4] - [14.7 26.3]

Ang [3.8 11.7] [7.5 17] [15.6 27.4] -

dynamic feature denoted by dlo, an intermediate-dynamic
feature denoted by din, and a high-dynamic feature denoted
by dhi. dlo, din, and dhi are taken as the ones with the
highest frequency in the low frequency interval from fs

T
to 5Hz, in the intermediate frequency interval from 5Hz
to 10Hz, and in the high frequency interval from 10Hz to
15Hz. Finally, {s}, {dlo}, {din}, and {dhi} are gathered as
the set of s, dlo, din, and dhi from all the utterances in the
dataset.

The validation is performed four times separately on
the four feature sets of {s}, {dlo}, {din}, and {dhi}. For
example, {s} are divided into four sub-groups according to
the emotion of utterance. The validation is carried out to
test the differences among the four sub-groups. Since we
do not have prior knowledge on whether the distribution
of s in one emotion follows Gaussian or not. Therefore, the
Kruskal Wallis test [24] is used to validate where the samples
are independent of each other. Similarly, the validation is
performed on the four feature sets. Figure 4 illustrates the
results on the four feature sets. As can be observed in Figure
4, there are significant differences in s, dlo, din, and dhi

among the four emotions.
Discussion. Viewing the above results, head motion

plays an important role in the expressiveness of emotion.
The static and dynamic features provide meaningful infor-
mation of the emotion simultaneously conveyed by speech.
The promising recognition accuracies reveal that the static
and dynamic features are informative clues for emotion
recognition. This suggests that head motions perform with
different patterns of the static and dynamic features for
the four emotions, which is confirmed by our exploratory
study. The recognition accuracy of neutral is the highest.
It shows that head motions in the neutral state are more
distinguishable from the other emotional states. This could
suggest that humans are skilled in encoding emotional
information into head motion, which is in line with the
previous work of [10]. Our exploratory study demonstrates
that the four categories of the static feature and the dynamic
features with low, intermediate, and high frequencies are
reasonable to explain the usefulness of head motion for
emotion recognition. It suggests that humans intentionally
move the head to express their specific emotions.

To further understand how the static and dynamic fea-
tures are correlated to the emotional information in human
perception, we conduct three intra-related subjective exper-
iments in order to collect and analyze human perception of
emotion on original or manipulated head motion data.
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6 SUBJECTIVE EXPERIMENTS

Our objective experiments reveal that the emotional infor-
mation may be decoded from head motion alone. In order
to further understand whether humans are able to recognize
emotion from head motion alone in an utterance, the first
goal of our subjective experiments is to investigate whether
human subjects are able to judge the type of emotion from
head motion alone. The second goal is to look into how
the static and dynamic features affect human perception of
emotion.

As introduced in Section 3, a pitch, roll, or yaw head
rotation sequence with the length of T is the sum of a static
feature and T dynamic features. The 1st/T -th dynamic
feature has the lowest/highest frequency of 15

T /15Hz in our
dataset. While the static feature indicates the still motion,
the frequency of dynamic feature reflects the perception of
fluidity (jerky or smooth) and speed (slow or fast) of move-
ment. For instance, the work of [14] employs frequency to
quantify the ”jitter” occurring in movements. The dynamic
features with low frequencies refer to jerky and slow move-
ment; those with high frequencies reflect smooth and fast
movement. Hence, according to the perception of movement
fluidity and speed, the dynamic features in an utterance are
categorized into three groups with low frequencies (LF),
intermediate frequencies (IF), and high frequencies (HF),
respectively, which are denoted by gdLF , gdIF , and gdHF :

• gdLF , referring to the components of smooth-and-
slow movement, contains the dynamic features with
low frequencies ranging from 15

N (the lowest fre-
quency) to 5Hz;

• gdIF , referring to the components of moderate-
fluidity-and-speed (neither smooth/slow nor
jerky/fast) movement, contains the dynamic
features with intermediate frequencies ranging from
5Hz to 10Hz;

• gdHF , referring to the components of jerky-and-fast
movement, contains the dynamic features with high
frequencies ranging from 10th to 15th(the highest
frequency);

These categories enable us to investigate the link between
the human perception of emotion and the human percep-
tion of movement fluidity and speed. In addition to the
above groups of dynamic features, the other two groups are
defined as follows:

• gs, referring to the component of still movement,
contains sp, which is viewed as a group and refer
to as a still-frame movement.

• gor refers to the original motion. It is viewed as the
sum of the above four groups of gdLF , gdIF , gdHF and
gs.

The second goal, mentioned before, of our subjective ex-
periments is to investigate how gs, gdLF , gdIF and gdHF

affect human perception of emotion, which could reveal
the perception of emotion from still movement, fluidity and
speed of movement.

To achieve our goals, we conduct three intra-related
perceptual experiments. The first user study is called User
Study on Perception of Motion Modality (US-M). It is mainly to
study whether human subjects are able to judge the emotion

from the uni-modality of head motion data, denoted by
Mh. US-M is concerned with the first goal. The second user
study is called User Study on Perception of Static Motion (US-
Sta). It looks into human perception’s link with gs. US-Sta
is concerned with the second goal. The third user study is
called User Study on Perception of Dynamic Motions (US-Dyn).
It looks into human perception’s link with the dynamic
features. US-Dyn is also concerned with the second goal.

In the perceptual experiments, 20 participants are re-
cruited, consisting of 8 males and 12 females with age
ranging from 18 to 40 (M=27 years, SD=3.9 years), to rate
their perceptions on a human-like virtual character dis-
playing animations through designed online webpages. The
participants are invited to complete the user studies in a
quiet office. The participants can freely watch video clips
of virtual character on one webpage as many times as they
want. At the beginning of each user study, each participant
fills out a demographic questionnaire concerning his/her
age, gender, education level, occupation and country in
which the participant spent the majority of his/her life. Our
studies are focused on human perception of emotion linked
with head motions but not on the appearance of virtual
characters. The identical virtual character is employed in our
perceptual experiments. In each animation clip, the virtual
character displays head animation and/or simultaneously
utters the corresponding acoustic speech. To suppress the
potential effect of emotional information from facial expres-
sion (even neutral expression [25]), the facial expression
region (including the eyes region) and the mouth region are
intentionally masked with strong mosaic. Figure 8 shows the
masked virtual character. We describe the three perceptual
experiments as follows.

6.1 User Study on Perception of Motion Modality
US-M is conducted to learn whether human subjects are able
to recognize the type of emotion according to Mh.

Hypothesis: in US-M, we formulate one hypothesis as
follows:

• M-H: human subjects are able to reliably judge emo-
tion from head motion alone in an utterance.

This hypothesis is formulated according to that the type
of emotion can be reliably referred from head motion data
(see the objective experiments). M-H would be confirmed if
human subjects are able to judge emotion from Mh with
similar recognition accuracies as from the bi-modality of
head motion and speech, noted by Mhs, or the uni-modality
of speech, noted by Ms, as it is well known that humans are
able to well infer emotion from Mhs or Ms.

Protocol: The participant is instructed to watch clips of
virtual character and then asked to judge the emotion of the
virtual character (Figure 5). We provide the elements of the
protocol we follow in this user study.

1) Stimuli: 12 utterances (3 sentences × 4 emotions)
are randomly selected from the dataset. For each
utterance, we take into account three conditions of
Cor

h , Cor
s , and Cor

hs where C is the abbreviation of
Condition; h, s, and hs respectively refer to Mh,
Ms, and Mhs; and or refers to original data of
motion and/or speech recorded in our dataset. Cor

h ,
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Fig. 5: A snapshot of a participant taking part in US-M.

Cor
s , and Cor

hs stand for the original head data, the
original speech data, and the original head-and-
speech data. In total, 36 clips are created from 12
utterances for 3 different conditions, including 24
animation clips and 12 audio clips.

2) Procedure: The participant is invited to perceive the
36 clips, which are displayed randomly for each
participant. After watching each clip, the participant
is instructed to select the perceived emotion out
of neutral, sadness, happiness, and anger. Figure
5 demonstrates a snapshot of a participant who is
taking part in this user study.

Results: Each clip is judged 20 times by 20 participants.
We average the recognition accuracies of the 3 clips which
have the identical condition and emotion. In total, 9 aver-
aged recognition accuracies are calculated and reported in
Figure 6. The results show that Cor

hs outperforms Cor
h and Cs

and also Cs performs better than Ch. In particular, although
Cs is scored slightly less than Chs, the overlapping of the
95% confident intervals of Cor

hs and Cs is observed for the
four emotions. This means that there is no significant differ-
ence between Cor

hs and Cs. Moreover, while the overlapping
of the 95% confident intervals of Cor

s and Ch is observed for
neutral, sadness, and anger, it is unobserved for happiness.
Particularly, although Ch in neutral and anger has the
accuracy more than the chance level (25%), it is scored lower
than the chance level (25%) in sadness and happiness. The
above observations indicate that M-H is untrue.

Discussion-M: The results above show that Mhs and
Ms provide more emotional information than Mh. Humans
are able to decode the emotional information from the
coordinated head motion and speech audio. This shows that
the speech audio predominantly affects the perception of
emotion. Additionally, the results of Ch reveal that humans
are unable to reliably perceive the emotional information
from Mh. This is inconsistent with the results of our objec-
tive experiments.

Humans are able to perceive anger and neutral better
than happiness and sadness from Mh. It appears that
humans encode more information into head motion when
conveying neutral and anger than expressing sadness and
happiness, or the human sensitivity to head motion depends
on the perceived emotion. On the other hand, the objec-
tive results in Figure 4 show that the static and dynamic
features in neutral and anger are not higher than those in
sadness and happiness. Considering together the subjective
and objective results mentioned above suggests that human

perception is not straightforwardly correlated to the ampli-
tude of the static and dynamic features. This also explains
why humans are sensitive to subtle expressions with slight
movement.

Since Mh is inadequate to characterize the type of emo-
tion, Mhs is employed in US-Sta and US-Dyn. Moreover,
considering that the speech audio is adequate to shape the
type of emotion, in the other perceptual experiments we in-
vestigate the roles of gs, gdLF , gdIF , and gdHF in the perception
of the level of emotion instead of emotion recognition.

6.2 User Study on Perception of Static Motion
US-Sta investigates the impact of gs on human perception
of the level of emotion. gs refers to the static feature of pitch
head rotation.

Hypotheses: US-Sta is carried out to investigate the
hypotheses formulated as follows:

• S-HNeu/HSad/HHap/HAng (intra-emotion): human
subjects are sensitive to gs when perceiving the level
of neutral/sadness/happiness/anger. For the sake of
simplicity, S-H stands for a general symbol of the
four hypotheses.

• S-HInterEmo (inter-emotion): when perceiving the
level of emotion, human sensitivity to gs is different
depending on the perceived type of emotion.

S-H brings insight into gs for each individual emotion. It
enables us to further understand the impact of gs on the
perception of one emotion. Additionally, OB-Ex has shown
that gs which human speakers encode has significant differ-
ence depending on the expressed emotion (see Figure 4(a)).
S-HInterEmo takes insight into gs from the inter-emotions. It
allows us to verify whether the human listener decodes gs

in different manners depending on the perceived type of
emotion.

To confirm S-H, we compare the level of each of the
four emotions with gs at different values (conditions). S-
H would be confirmed if the human perception of the
level of emotion is differential among the conditions of gs.
To confirm S-HInterEmo, we compare the levels of the four
emotions perceived across the conditions of gs. S-HInterEmo

would be confirmed if the human perception of the level of
emotion is distinguishable among the four emotions.

If both S-HInterEmo and DC-H are verified, this would
suggest that each emotion may have its own optimal
value(s) of gs to enhance its expressiveness. Hence, an
exploratory study is done in this user study to answer the
question below:

• DC-Ex: What is the optimal value of gs (the static
feature) that can most enhance the expressiveness of
neutral/sadness/happiness/anger?

Protocol: The participants are asked to perceive the
virtual character displaying human head data with manipu-
lated gs and then to rate the level of perceived emotion. We
provide the elements of the protocol we follow in this user
study.

1) Stimuli: We investigate gs from −15◦ to 15◦ with a
step size of 5◦, where 0◦ denotes face straight for-
ward. In total, gs has seven candidates (conditions)
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Fig. 6: Emotion Recognition in US-M. (a)-(c). The Confusion matrices of emotion recognition under Cor
h , Cs, and Cor

hs. (d).
Recognition accuracies of Cor

h , Cs, and Cor
hs (the values in the diagonal lines of the three confusion matrices.). The error

bars indicate the 95% confident interval.

Fig. 7: Reference image (front view and side view) of head
pitch rotation ranging from −15◦, −10◦, −5◦, 0◦, 5◦, 10◦,
and 15◦. In our subjective experiments, the whole face re-
gion is intentionally masked with strong mosaic (see Figure
8).

visualized in Figure 7. To quantify the influence
of gs on perception, twelve audiovisual utterances
are selected from the dataset. They consist of three
randomly selected sentences uttered four times with
the four emotions. For each utterance, gs of the
original head motion is removed and substituted by
its seven conditions, respectively. Note that no other
operation is performed on head pitch rotation, and
no operation is performed on roll and yaw rotation
values of the head as well as the speech audio
signals. For each utterance, seven animation clips
are made under the seven conditions but with the
same original speech audio. In total, 84 animation
clips (3 sentences× 4 emotions× 7 conditions) were
created.

2) Procedure: US-Sta is designed to investigate the
differences among the seven conditions of gs. In
this user study, the virtual character is used to
display the 3-dimensional head rotation data under
the seven conditions. Each webpage encloses seven
animation clips under the seven conditions but
with the same speech audio, in a random order.
According to the aforementioned OB-Ex, the speech
audio is adequate to characterize the conveyed
emotion, it could be appropriate to assume that the
seven animation clips on one webpage interface
express the same emotion. This user study is
to investigate the level of the expressiveness of
emotion instead of recognition of the emotion
type. To facilitate the participation, the participant

is explicitly informed of the expressed emotion
through texts.

In total, 12 webpages are created from the three
sentences and their four emotions. The participant
is instructed to view 12 webpages (see Figure 8).
He/She is asked to rate the level of the expressed
emotion for each animation clip using a 5-points
Likert scale.

Fig. 8: A snapshot of the webpage used in US-Sta. One
webapge encloses seven animation clips under the seven
conditions but with the same speech audio. The clips are
displayed separately with an individual button of Play. Only
one clip can be displayed at one time. When a video clip is
chosen to play, its visual dimension is automatically zoomed
in. In the figure, the 6th video clip is being played.

Results on S-HInterEmo: To investigate the formulated
hypothesis of S-HInterEmo, we study whether the rated levels
of emotion are differential among the four emotions. The
rated level is computed under the seven conditions of gs,
respectively. For example, under the condition of gs at 10◦,
the scores of the animation clips with gs at 10◦ are collected
from the 12 webpages and then they are classified into
four groups according to the type of emotion. Each group
contains 60 scores from 3 utterances with the same emotion,
which are rated by 20 participants. The validation of DC-
HInterEmo is to test whether there is significant difference
among the four groups of 60 scores for each condition of gs.
Each score is rated on one webpage and by one participant.
These collected scores can be viewed as being independent
of each other. Moreover, we do not know whether the
distribution of the 60 scores in one group is Gaussian. There-
fore, we use the Kruskal-Wallis Test, which is a rank-based
nonparametric test to assess whether there are significant
differences between two or more groups of an independent
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TABLE 3: Statistical test results of the Kruskal-Wallis Test.
The Kruskal-Wallis Test is used seven times for the seven
conditions of gs. Each time is to verify whether there is a
significant difference in the score of the level of perceived
emotion, under one condition of gs, among the four emo-
tions of neutral, sadness, happiness and anger. ** marks
p<.01; *** marks p<.001.

−15◦ −10◦ −5◦ 0◦ 5◦ 10◦ 15◦

χ2(3) 88.85 49.44 34.34 30.21 28.89 21.09 14.09
*** *** *** *** *** *** **

variable [24]. In this user study, the independent variable is
the type of emotion, which has four independent groups:
60 scores with neutral, 60 ones with sadness, 60 ones with
happiness, and 60 ones with anger.

The Kruskal-Wallis Test is carried out seven times for
the seven conditions of gs. At each time, Kruskal-Wallis
Test performs over the four emotions under one condition
of gs. The results are reported in Table 3. As can be seen,
the Kruskal-Wallis tests show that there is a significant
difference in the rated scores among the four emotions for
the seven conditions of gs. It shows that human perception
of the level of emotion is distinguishable among the four
emotions. This verifies DC-HInterEmo that the human sensitivity
of gs is different depending on the perceived emotion.

Results on S-H: To validate the formulated hypothesis
of S-H, we look into whether the rated levels of emotion
are differential among the seven conditions of gs. It is
carried out four times for the four emotions, respectively.
For example, for the emotion of anger, the scores of the an-
imation clips with anger are collected from the 3 webpages
with anger and then they are classified into seven groups,
according to the condition of gs. Each group contains 60
scores from 3 utterances with the same emotion, which
are rated by 20 participants. The validation of DC-H is
to test whether there is significant difference among the
seven groups of 60 scores for each emotion. Considering
that the participants can freely view the seven animation
clips on one webpage and then rate them at one time, the
seven scores are dependent of each other. Furthermore, we
do not know whether the distribution of the 60 scores in
one group is Gaussian. Therefore, we use the Friedman
Test, which is a nonparametric test to assess whether there
are statistically significant differences between groups of
a dependent variable. In this user study, the dependent
variable is the condition of gs, which has seven dependent
groups: 60 scores under −15◦, 60 ones under −10◦, 60 ones
under −5◦, 60 ones under 0◦, 60 ones under 5◦, 60 ones
under 10◦, and 60 ones under 15◦.

The Friedman test is carried out four times for the four
emotions. Each time, Friedman test is used over the seven
conditions of gs with one emotion. The results are reported
in Table 4(a). As can be seen, the Friedman tests show
that there are significant differences in the rated scores
among the seven conditions of gs for the four emotions.
It reveals that human perception of the level of emotion is
differential among the conditions of gs for each of the four
emotions. This validates DC-HNeu/HSad/HHap/HAng that human
subjects are sensitive to the static feature in the perception of

Fig. 9: Perception of emotion rated by participants. For each
emotion, the point(s) with the highest value(s) is marked
with circles. Particularly, no significant difference is statis-
tically found between the two circled points for neutral
and happiness. More details about statistically significant
differences can be found in Table 4(b).

TABLE 4: Significant differences in the perception of neutral
(Neu), sadness (Sad), happiness (Hap) and anger (Ang)
between the conditions of gs. The Friedman test is to test
the differences among the seven conditions of gs, which
is reported in Table 4(a). Post hoc analysis with Wilcoxon
signed-rank tests was conducted to verify the significant
differences between the highest value(s) of gs (see Figure
9) and its other values. - marks no significant difference; *
marks p<.05; ** marks p<.01; *** marks p<.001.

(a) Friedman test (χ2-values and significant differences)

Neu Sad Hap Ang
χ2(6) 93.43 *** 83.2 *** 34.1 *** 35.39 ***

(b) Wilcoxon signed rank test (z-values and significant differences)

Neu −15◦ −10◦ −5◦ 0◦ 5◦ 10◦ 15◦

0◦ 5.22 5.06 3.55 0.54 2.85 3.87
*** *** *** - ** ***

5◦ 5.35 5.22 3.16 -0.54 2.16 3.06
*** *** ** - * **

Sad −15◦ −10◦ −5◦ 0◦ 5◦ 10◦ 15◦

−15◦ 2.96 2.49 4.36 4.99 4.89 5.82
** * *** *** *** ***

Hap −15◦ −10◦ −5◦ 0◦ 5◦ 10◦ 15◦

0◦ 4.11 2.86 3.04 0.05 2.59 2.25
*** ** ** - ** *

5◦ 4.61 2.95 2.54 -0.05 2.69 2.32
*** ** * - ** *

Ang −15◦ −10◦ −5◦ 0◦ 5◦ 10◦ 15◦

0◦ 4.57 2.89 3.18 2.33 3.23 3.74
*** ** ** * ** ***

neutral/sadness/happiness/anger.
Results on S-Ex: Since S-H is validated, we want to

identify the optimal value(s) of gs to enhance the perception
of emotion. Due to the validation of S-HInterEmo, the optimal
value(s) of gs should be reasonably different among the four
emotions. So, we explore the optimal value(s) of gs for each
emotion. The exploration is based on the averaged scores of
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each condition of gs.
Figure 9 shows the averaged scores rated by the partic-

ipants for the four emotions. We aim to identify gs with
the highest score(s) only which corresponds the optimal
value(s) of gs. To learn about it, the Wilcoxon signed-rank
test is employed to carry out the pairwise comparisons
between the conditions of gs. The Wilcoxon signed-rank
test allows us to pick out gs with the highest score(s) by
verifying the statistical difference between the averaged
scores. The results of statistical difference are shown in Table
4(b).

For neutral and happiness, the two highest scores are
observed: 0◦ and 5◦. No statistical difference is found be-
tween 0◦ and 5◦. The scores of 0◦ and 5◦ are statistically
higher than the others. This means that the expressiveness
of neutral or happiness can be enhanced most by gs valued
at 0◦ or 5◦. For sadness/anger, −15◦/0◦ is observed as the
value of gs with the highest score. The score of −15◦/0◦
is statistically higher than the others. This means that the
expressiveness of sadness/anger can be enhanced most by
gs valued at −15◦/0◦. The highest scores above are marked
by circles in Figure 9.

Discussion-S: The verification of S-H and S-HInterEmo

shows that the static motion has non-trivial impact on
the perception of emotion. The perceptual sensitivity is no
more than 5◦. The optimal value(s) of gs suggests that the
perception of neutral and happiness can be enhanced by
adjusting the averaged pitch head rotation straight (e.g. 0◦)
or slightly up (e.g. 5◦); the perception of sadness can be
enhanced by adjusting the averaged value of head pitch
rotation towards down (e.g. −15◦); and the perception of
anger can be enhanced by adjusting the averaged value of
head pitch rotation towards straight (e.g. 0◦).

When observing the static features of the original human
motion data reported in Figure 4(a), we find that the original
static features tend to face up slightly and they are not
strictly consistent with the above reported optimal values.
For example, while the optimal value is 0◦ or 5◦ for neutral,
the original static feature is about 5◦; while the optimal
value is −15◦ for sadness, the original static feature is about
3◦ or 4◦; the original static feature is about 2◦ or 3◦ for anger,
which is approaching the optimal value of 0◦; the original
static feature is about 2◦ for happiness between the optimal
values of 0◦ and 5◦. These comparisons suggest that the
expressiveness of emotion could be enhanced by consistent
manipulations of adjusting the averaged value of the pitch
rotation of the captured head motion data in an utterance
(The interested reader can find more details about a further
in-depth study of consistent manipulations to enhance the
expressiveness of emotion in [26]).

6.3 User Study on Perception of Dynamic Motions

US-Dyn investigates the influence of gdLF , gdMF , and gdHF

on human perception of the level of emotion. To do it,
we make several variations by removing gdLF and gs from
gor , denoted by CLF∩S; by removing gdIF and gs from gor ,
denoted by CIF∩S; and by removing gdHF and gs from gor ,
denoted by CHF∩S. Additionally, another variation, noted
by CS, is made by removing gs from gor . CLF∩S, CIF∩S,

CHF∩S, and CS are the four conditions taken in US-Dyn. C
is the abbreviation of Condition.

The influence of gdLF /gdIF /gdHF is estimated by compar-
ing CLF∩S/CIF∩S/CHF∩S with CS. In these comparisons,
the impact of gs is excluded by removing gs, as the role
of gs has been studied in Section 6.2. We look into CLF∩S,
CMF∩S, CHF∩S, and CS in the perception of the level of
emotion.

Hypotheses: US-Dyn is carried out to investigate the
hypotheses formulated as follows:

• D-HNeu/HSad/HHap/HAng (intra-emotion): the hu-
man sensitivity to low-dynamic, intermediate-
dynamic, and high-dynamic motions (gdLF , gdIF ,
and gdHF ) is differential in the perception of neu-
tral/sadness/happiness/anger. For the sake of sim-
plicity, D-H stands for a general symbol of the four
hypotheses.

• D-HInterEmo (inter-emotion): the sensitivity to low-
dynamic, intermediate-dynamic, and high-dynamic
motions (gdLF , gdIF , and gdHF ) is different in the per-
ception of different emotions.

D-H brings insight into gdLF , gdIF , and gdHF from the
intra-emotion. It enables us to further learn the influence
of gdLF , gdIF , and gdHF on the perception of one emotion.
D-HInterEmo takes insight into gdLF , gdIF , and gdHF from the
inter-emotions. It allows us to verify whether the human
listener is able to differently decode gdLF , gdIF , and gdHF

when perceiving the different types of emotion.
To confirm D-H and D-HInterEmo, we compare the roles of

gdLF , gdIF , and gdHF in the perception of the level of emotion.
SC-H would be confirmed if the roles of gdLF , gdIF , and gdHF

are differential in the perception of one emotion; moreover,
SC-HInterEmo would be confirmed if the roles of gdLF , gdIF ,
and gdHF are distinguishable between the four emotions.

While investigating the emotional expressiveness of
head motion in speech, researchers looked into the natu-
ralness of head motion in previous works [10] [12]. This
user study is to investigate the roles of low-dynamic,
intermediate-dynamic, and high-dynamic motions in the
naturalness of head motion. Furthermore, although pre-
vious works often study the emotional expressiveness of
head motion and the naturalness of head motion, this
study presents unexplored aspect of the relationship be-
tween emotional expressiveness and naturalness. Hence, an
exploratory user study is done to investigate the hypothesis
as below:

• SC-H-Ex: the perception of emotion on head motion
is consistent with that of the naturalness of head
motion.

Protocol: Participants are instructed to watch 4 anima-
tion clips with the same speech on one webpage and then
asked to rank these animation clips two times: according
to the level of the expressiveness of emotion and the nat-
uralness of head animation, respectively. We provide the
elements of the protocol we follow for this user study.

1) Stimuli: 12 utterances (3 sentences× 4 emotions) are
selected from the dataset. For each utterance, the
four conditions of CLF∩S, CIF∩S, CHF∩S, and CS
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are considered and 16 animation clips (4 emotions
× 4 conditions) are created from its utterances. In
total, 48 clips are created for this study.

2) Procedure: US-Dyn is designed to investigate
the differences among the four conditions of
CLF∩S, CMF∩S, CHF∩S, and CS for each emotion.
The virtual character is used to display the 3-
dimensional head rotation data under the four
conditions. The animation clips are displayed
through an online webpage interface. Each
webpage encloses four animation clips under
the four conditions but with the same speech audio,
in a random order. According to OB-Ex, the speech
audio is adequate to characterize the conveyed
emotion, so we assume that the four animation
clips on one webpage express the same emotion.
This study is to investigate the perception of the
level of emotion instead of emotion recognition.
To facilitate the participation, the participants
are explicitly informed of the expressed emotion
through texts. In total, 12 webpages are created
from the three sentences and the four emotions.

The participants are instructed to view 12 web-
pages. They are asked to rank the four animation
clips twice: according to the level of perceived emo-
tion and the naturalness of head motion, respec-
tively. Figure 10 shows a snapshot of the webpage
used in this user study.

Fig. 10: A snapshot of the webpage used in US-Dyn. One
webpage encloses four animation clips under the four con-
ditions of CLF∩S, CIF∩S, CHF∩s, and CS of an utterance.
The clips are displayed separately with the individual play
button.

Results on D-HInterEmo and D-H: To verify the formu-
lated hypotheses of D-HInterEmo and D-H, the Friedman
test is first employed to determine the difference in one
emotion between the ranks of CLF∩S, CMF∩S, CHF∩S, and
CS. It is used to test the differences between groups when
the dependent variable being measured is ordinal [27]. It
performs separately four times for the four emotions. The
results of the Friedman test are reported in Table 5(a). The
results show that there is no significant difference between
CLF∩S, CMF∩S, CHF∩S, and CS for neutral while there are
significant differences for sadness, happiness, and anger.

TABLE 5: Significant differences in the perception of neutral
(Neu), sadness (Sad), happiness (Hap) and anger (Ang)
between the conditions of CLF∩S, CMF∩S, CHF∩S, and CS.
Table 5(a) reports the results of the Friedman test among
the five conditions for each emotion. Post hoc analysis
with Wilcoxon signed-rank tests was conducted to verify
significant differences of the pairwise comparisons. Table
5(b) reports the results of the pairwise comparisons between
CHF∩S and the other four conditions; Table 5(c) reports
the results of the pairwise comparisons of CLF∩S, CMF∩S,
and CHF∩S, which have significant differences from Cs (see
Table 5(b)). - marks no significant difference; * marks p<.05;
** marks p<.01; *** marks p<.001.

(a) Friedman test (χ2-values and significant differences)

Neu Sad Hap Ang

χ2(3) 5.84 - 71.34 *** 98.78 *** 79.04 ***

(b) Wilcoxon signed rank test (z-values and significant differences)
between gHF∩DC and the other three conditions

Neu CLF∩S CMF∩S CHF∩S

CS 1.80 - 0 - 1.25 -

Sad CLF∩S CMF∩S CHF∩S

CS 5.70 *** 2.59 - 2.02 -

Hap CLF∩S CMF∩S CHF∩S

CS 5.59 *** 6.12 *** 2.01 -

Ang CLF∩S CMF∩S CHF∩S

CS 6.27 *** 5.29 *** 3.64 *

(c) Wilcoxon signed ranks test (z-values and significant differences)
between CLF∩S, CIF∩S, CHF∩S which significantly differ from CS (see
Table 5(b)).

Hap CLF∩S(3.65) < CIF∩S(2.90), z=4.25, p<3e-05 ***

Ang

CLF∩S(3.57) < CIF∩S(2.63), z=3.95, p<8e-05 ***

CLF∩S(3.57) < CHF∩S(2.30), z=5.44, p<6e-08 ***

CIF∩S(2.63) < CHF∩S(2.30), z=1.86, p=0.06 -

To examine where the differences actually occur for
sadness, happiness, and anger, a post hoc analysis with
Wilcoxon signed-rank tests was conducted with a Bonfer-
roni correction applied to the pairwise comparison. The
partial results of Wilcoxon signed-rank tests are reported
in Tables 5(b) and 5(c). Table 5(b) reports the results of pair-
wise comparing CS with CLF∩S, CIF∩S, or CHF∩S. As can
be seen, for neutral, no significant differences are observed
between three comparisons. This suggests that dynamic
motions have no influence on the perception of neutral. For
sadness, while no significant difference is observed in the
comparison betweenCS andCIF∩S and another comparison
between CS and CHF∩S, there is a significant difference in
the comparison between CS and gLF∩S. This suggests that
CLF has significant impact on the perception of sadness and
CIF and CHF have no effect on it. For happiness, there
are significant differences between the comparison between
CLF∩S and CS and also another one between CIF∩S and



12

TABLE 6: Wilcoxon signed ranks test on perception of
naturalness in neutral (Neu), sadness (sad), happiness (hap)
and anger (ang). This table reports the z-value of Wilcoxon
signed ranks test. - marks no significant difference. * marks
p<.05, ** marks p<.01,*** marks p<.001.

Neu CLF∩DC
hs CMF∩DC

hs CHF∩DC
hs

CDC
hs 5.99 *** -0.34 - 1.22 -

Sad CLF∩DC
hs CMF∩DC

hs CHF∩DC
hs

CDC
hs 6.94 *** 4.87 *** 4.47 ***

Hap CLF∩DC
hs CMF∩DC

hs CHF∩DC
hs

CDC
hs 5.91 *** 1.52 - 1.59 -

Ang CLF∩DC
hs CMF∩DC

hs CHF∩DC
hs

CDC
hs 4.82 *** 0.004 - -1.22 -

CS. This suggests that CLF and CIF affect significantly
the perception of happiness. Table 5(c) further reports the
pairwise comparisons betweenCLF∩S andCIF∩S. The result
shows that CLF∩S is ranked significantly more advanced
than CIF∩S. This shows that CLF influences the perception
more than CIF . For anger, there are significant differences
in all the three comparisons with CLF∩S, CIF∩S, and CHF∩S.
This reveals that CLF , CIF , and CHF have certain affect
on the perception of anger. Moreover, Table 5(c) reports
the results of the pairwise comparisons between CLF∩S,
CIF∩S, and CHF∩S. The results show that CLF∩S is ranked
significantly more advanced than CIF∩S and CHF∩S and
that CIF∩S is ranked more advanced than CHF∩S. These
results reveal that CLF impact the perception of emotion
more than CIF and CHF and that CIF have more influence
than CHF .

The results above show that gdLF , gdIF , and gdHF dif-
ferently impact the perception of sadness, happiness, and
anger while they have no influence on the perception of
neutral. Therefore, HSad, HHap, and HAng are validated while
SC-HNeu is not confirmed.

Observing Table 5(b) and taking insight into the differ-
ences of gdLF , gdIF , and gdHF between the four emotions, we
find that gLF has no influence on the perception of neutral
while it make an impact on the perception of sadness,
happiness, and anger. Moreover, gdIF has no influence on
the perception of neutral and sadness while it impacts the
perception of happiness and anger. And, gdHF has no influ-
ence on the perception of neutral, sadness, and happiness
while it impacts the perception of anger.

These observations above reveal that the impact of gdLF ,
gdIF , or gdHF is differential among the four emotions. This
verifies SC-HInterEmo.

Results on D-H-Ex: To verify the formulated hypothesis
of D-H-Ex, we employ the Wilcon signed ranks test to verify
significant differences in the perception of naturalness of
head motion between CLF∩S, CIF∩S or CHF∩S and CS. The
results are reported in Table 6.

The significant difference reflects significant impact on
perception of naturalness. For neutral, there is a significant
difference between CS and CLF∩S, while there is no signif-
icant difference between CS and CIF∩S, and between CS

and CHF∩S. This means that gdLF has significant influence
on perception of naturalness while gdIF and gdHF have no
significant influence. For sadness, there are significant dif-
ferences between CS and CLF∩S, between CS and CIF∩S,
and between CS and CHF∩S. This means that gdLF , gdIF and
gdHF have significant influence. For happiness and anger,
there is a significant difference between CS and CLF∩S

while there is no significant difference between CS and
CIF∩S, and between CS and CHF∩S. This shows that only
gLF has influence on the naturalness of head motion.

These above observations indicate that gdLF has impact
on the perception of naturalness for all the four emotions
while gdIF and gdHF have effect on naturalness for sadness
and no influence for neutral, happiness, and anger. This
means that gdLF is crucial to the perception of naturalness
for the four emotions and that the naturalness for sadness
relies on not only gdLF but also gdIF and gdHF .

Tables 6 and 5(b) illustrate the roles of gdLF , gdIF and
gdHF in the perception of the naturalness of head motion and
in the perception of emotion, respectively. In Tables 6 and
5(b), the significant impact (difference) on the perception of
emotion or naturalness is highlighted with gray.

As can be seen in Tables 5(b) and 6, in neutral, gdLF has
impact on the perception of naturalness rather than emotion;
in sadness, gdIF and gdHF has impact on the perception of
naturalness rather than emotion; in happiness, gdIF and gdHF

has impact on the perception of emotion rather than natu-
ralness; in anger, gdIF and gdHF has impact on the perception
of emotion rather than naturalness. These observations show
that SC-H-Ex is not verified.

Discussion-Dyn: The verification of HSad, HHap, and
HAng reveals that humans are sensitive to gdLF , gdIF , and gdHF

and it suggests that humans are very skilled in decoding
gdLF , gdIF , and gdHF depending on the perceived emotion.
Moreover, it implies that gdLF , gdIF , and gdHF provide useful
cues to carry emotion information. The non-verification of
D-HNeu shows that gdLF , gdIF , and gdHF have no influence
on human perception of emotion. Comparing the verified
hypotheses with emotional states (sad, happy, and angry)
and the non-verified hypothesis with non-emotional state
(neutral), it reveals that gdLF , gdIF , and gdHF play important
roles in encoding the emotional information into head mo-
tion for the emotional states. The verification of SC-HInterEmo

shows that humans decode the emotional information in a
non-trivial manner, which depends on the perceived emo-
tion. Indeed, when observing Figure 4(d) and Table 5(b), we
find that, while gdHF has no impact on the perception of
happiness but affects the perception of anger, it has a higher
amplitude in happiness than anger. It shows that a higher
amplitude may have lower effect on the perception, which
supports the verification of SC-HInterEmo.

The non-verification of D-H-Ex reveals that humans
perceive emotion through head motion and the naturalness
of head motion in two different channels. When observing
the non-naturalness, humans are capable of perceiving the
emotional information. For example, while perceiving the
degraded naturalness due to the lack of gdIF , and gdHF in
sadness, humans can perceive sadness accurately.

From the perception of emotion, we observe that gdLF

affects sadness, happiness, and anger; gdIF has effect on
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TABLE 7: Summary of the effects of the static and dynamic
features on emotion expression (Table 7(a)) and naturalness
perception (Table 7(b)). “Average” refers to the static feature
on head pitch rotation. Smooth-and-slow (Sm-Sl), moderate-
fluidity-and-speed (Mo-fl-sp), and jerky-and-fast (Je-fa) re-
fer to the dynamic features on head pitch rotation.

(a) The static feature rotation angles that most enhance the
emotions, and certain dynamic features, with Y (Yes), that
affect emotion perception.

Neutral Sadness Happiness Anger
Average 0◦/5◦ −15◦ 0◦/5◦ 0◦

Sm-Sl Y Y Y
Mo-fl-sp Y Y
Je-fa Y

(b) Certain dynamic features, with Y (Yes), affect natural-
ness perception.

Neutral Sadness Happiness Anger
Sm-Sl Y Y Y Y
Mo-fl-sp Y
Je-fa Y

happiness and anger; and gdHF has impact on anger only. For
the perception of naturalness, we observe gdLF influences all
the four emotions; gdIF and gdHF have effect on sadness only.
This suggests that dynamic motions with lower frequencies
have more effect on the perception of emotion and the per-
ception of naturalness of head motion, which is consistent
with the results in Table 5(c). This can be explained by the
amplitudes of dynamic motions reported in Figures 4(b)-
4(d), which demonstrates that the dynamic motion with
lower frequencies has higher amplitudes. On the other
hand, although gdHF has a low amplitude, it impacts the
perception of anger and the perception of head naturalness
for sadness.

7 CONCLUSIONS

In this paper, we propose the static and dynamic features,
extracted with Fourier transform, to characterize head mo-
tion in expressive speech, and aim to analyze and under-
stand the human perception of emotion in head motion and
the human perception of the naturalness of head motion.
The static feature reflects the rotation bias and the dynamic
features describe the motions from smooth-and-slow, Table
7 summarizes the effects of the static and dynamic features
on emotion expression and naturalness perception.

Our work is conducted through intra-related objective
and subjective experiments. It reveals that human speakers
encode the static and dynamic features for head motion
differently, depending on the emotions they are expressing.
Our study reveals that humans are skillful both at encoding
and decoding the static and dynamic features and that these
features provide sound explanations to the link between
head motion and the perception of emotion in an utterance.

In the objective experiments, static and dynamic features
are employed to recognize the emotion in an utterance. The
promising recognition accuracies show that the static and
dynamic features are effective in characterizing and recog-
nizing emotions. We also learn that the uni-modality of head

motion data provides adequate clue to reflect the emotional
information. Based on the captured human motion data,
statistical tests show that the static and dynamic features
are coordinated in a non-trivial manner depending on the
conveyed emotion. Our objective experiments suggest that
the static and dynamic features would be useful features to
characterize head motion to distinguish the type of emotion
in an utterance. It demonstrates that humans are very skilled
at coordinating the static and dynamic features to express
specific emotions.

In accordance with the objective analysis, we conduct
three subjective experiments (US-M, US-Sta, and US-Dyn).
US-M shows that humans are unable to reliably perceive
emotion from head motion alone, which is not in line
with the finding of our objective experiments. It suggests
that humans encode more information into head motion
when conveying neutral and anger than expressing sadness
and happiness. US-Sta reveals that the static feature is
closely related to the perception of emotion. Particularly,
the perceptual sensitivity to up-down still rotation is no
more than 5◦. US-D shows that dynamic motions with
lower frequencies have more impact on the perception of
emotion and the naturalness of head motion but a higher
amplitude may not lead to more effect on the perception.
US-Dyn shows that humans are able to decode dynamic
motions in different manners depending on the perceived
emotion. It also reveals that humans perceive emotion car-
ried in head motion and the naturalness of head motion
in two different channels. On one hand, humans are able
to perceive emotion carried in unnatural head movement;
on the other hand, even if the emotion is degraded due to
the certain manipulation of head motion, humans may still
perceive that head movement is natural. US-Sta and US-
Dyn together reveal that humans are sensitive to the static
and dynamic motions in a non-trivial manner depending
on the perceived emotion when perceiving emotion and the
naturalness of head motion. US-Dyn and US-M indicate
that human perception is unrelated to the amplitude of
the dynamic features. A higher amplitude may affect the
perception less. These results provide evidence that humans
are adept at decoding the static and dynamic features to
perceive emotion.

The reported objective and subjective results establish
that the static and dynamic features are informative to
characterize head motion in expressive speech. The static
and dynamic features provide reasonable explanations to
head motion linked to the expressiveness and perception of
emotion in an utterance, based on a low-level description of
motion instead of action or motion style. To the best of our
knowledge, this work is the first to explore the low-level
characterization of head motion in expressive speech.

Some limitations exist in our current work: 1) this work
relies on the head motion data of a professional actress
uttering a planned script. We will further validate whether
our findings can be generalized to other persons and also
whether the findings can be generalized to head motion in
daily conversations (and even multi-party conversations);
2) Our investigations are based on short utterances in the
dataset. It is worthy to further study utterances lasting for
longer time; 3) our subjective experiments rely on human
perception on the performance of a virtual character. It is



14

still unclear whether our findings can be validated on the
performances of real people, due to the potential perceptual
gap on the performances of real people and those of virtual
characters.

8 ACKNOWLEDGMENTS

This research is supported in part by NSF IIS-1524782.

REFERENCES

[1] P. Ekman and W. V. Friesen, “Facial action coding system,” 1977.
[2] M. Lhommet and S. C. Marsella, “Expressing emotion through

posture,” The Oxford Handbook of Affective Computing, pp. 273–285,
2014.

[3] A. C. C. Roether, L. Omlor and M. Giese, “Critical features for the
perception of emotion from gait,” J. Vision, vol. 8, no. 6-15, pp.
1–32, 2009.

[4] G. Castellano, M. Mortillaro, A. Camurri, G. Volpe, and K. Scherer,
“Automated analysis of body movement in emotionally expres-
sive piano performances,” Music Perception: An Interdisciplinary
Journal, vol. 26, no. 2, pp. 103–119, 2008.

[5] H. M. Paterson, F. E. Pollick, and A. J. Sanford, “The role of velocity
in affect discrimination,” Proceedings of the Cognitive Science Society,
pp. 756–761, 2001.

[6] M. M. Gross, E. A. Crane, and B. L. Fredrickson, “Methodology
for assessing bodily expression of emotion,” Journal of Nonverbal
Behavior, vol. 34, no. 4, pp. 223–248, 2010.

[7] N. Fourati and C. Pelachaud, “Perception of emotions and body
movement in the emilya database,” IEEE Transactions on Affective
Computing, vol. xx, no. xx, p. (preprint online), (accepted in 2016).

[8] F. Durupinar, M. Kapadia, S. Deutsch, M. Neff, and N. I. Badler,
“Perform: Perceptual approach for adding ocean personality to
human motion using laban movement analysis,” ACM Trans.
Graph., vol. 36, no. 1, pp. 6:1–6:16, Oct. 2016.

[9] A. Kleinsmith and N. Bianchi-Berthouze, “Affective body expres-
sion perception and recognition: A survey,” IEEE Transactions on
Affective Computing, vol. 4, no. 1, pp. 15–33, 2013.

[10] C. Busso, Z. Deng, M. Grimm, U. Neumann, and S. Narayanan,
“Rigid head motion in expressive speech animation: Analysis
and synthesis,” IEEE Transactions on Audio, Speech and Language
Processing, vol. 15, no. 3, pp. 1075–1086, March 2007.

[11] A. Adams, M. Mahmoud, T. Baltrušaitis, and P. Robinson, “Decou-
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