
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

A Deep Learning-based Framework for
Intersectional Traffic Simulation and Editing

Huikun Bi, Tianlu Mao, Zhaoqi Wang, and Zhigang Deng, Senior Member, IEEE

Abstract—Most of existing traffic simulation methods have been focused on simulating vehicles on freeways or city-scale urban
networks. However, relatively little research has been done to simulate intersectional traffic to date despite its broad potential
applications. In this paper we propose a novel deep learning-based framework to simulate and edit intersectional traffic. Specifically,
based on an in-house collected intersectional traffic dataset, we employ the combination of convolution network (CNN) and recurrent
network (RNN) to learn the patterns of vehicle trajectories in intersectional traffic. Besides simulating novel intersectional traffic, our
method can be used to edit existing intersectional traffic. Through many experiments as well as comparative user studies, we
demonstrate that the results by our method are visually indistinguishable from ground truth, and our method can outperform existing
methods.

Index Terms—Traffic simulation, crowd simulation, data-driven, deep learning, intersectional traffic

F

1 INTRODUCTION

V IRTUAL traffic has been increasingly used in urban
planning, computer games, urban network visualiza-

tion, virtual reality, and auto-driving applications in re-
cent years. In particular, with the rapid development of
digital earths (e.g., Google Maps, and Virtual Earth) and
smartphone techniques, more and more real-world traffic
data can be efficiently collected for traffic visualization and
simulation applications [1].

Most of existing traffic simulation methods have been fo-
cused on simulating vehicles on freeways or city-scale urban
networks, using either macroscopic models (e.g., [2], [3]) or
microscopic models (e.g., [4], [5], [6], [7]), to generate vehicle
trajectories. However, to date relatively little research has
been done to simulate intersectional traffic. For instance, in
the work of [8] and some well-known traffic simulators
[9], [10], the simulation of intersectional traffic is over-
simplified into a queue system, which is clearly fall short
of modeling complex real-world intersectional traffic. The
vehicles simulated in SUMO [10] drive along well-defined
lanes (Fig. 1(d)) and follow car-following rules. Compared to
ground truth intersectional traffic (Fig. 1(a)), the trajectories
simulated by SUMO (Fig. 1(b)) are too regular, lacking of
flexibility and diversity.

Intersectional traffic simulation often need to handle
heterogeneous vehicles mixed with pedestrians. Some hu-

• H. Bi is with the University of Chinese Academy of Sciences, Huairou,
Beijing 100049, China; with the Beijing Key Laboratory of Mobile Com-
puting and Pervasive Device, Institute of Computing Technology, Chinese
Academy of Sciences, Haidian, Beijing 100190, China; and with Computer
Graphics and Interactive Media Lab, University of Houston, Houston,
TX, USA 77204.
E-mail: xiaobi361@gmail.com

• T. Mao and Z. Wang are with the Beijing Key Laboratory of Mobile
Computing and Pervasive Device, Institute of Computing Technology,
Chinese Academy of Sciences, Haidian, Beijing 100190, China.
E-mail: ltm@ict.ac.cn, zqwang@ict.ac.cn

• Z. Deng is with the Computer Science Department, University of
Houston, Houston, TX 77004. E-mail:zdeng4@uh.edu

man trajectory prediction methods (e.g., [11], [12], [13],
[14], [15]) in crowded space treat each object as a point
in the model. Various deep learning models learn human-
human interactions based on hidden states in the network
and assume that each object has similar behavior patterns.
However, the dynamic behaviors of vehicles and those of
pedestrians are significantly different, in particular, when
crossing intersections. Therefore, the above methods cannot
be directly applied for intersectional traffic simulations,
without considerable efforts.

On one hand, road intersections play an important role
in real-world traffic phenomena; on the other hand, the
difficulty of simulating realistic intersectional traffic has
been well recognized in the community. Arguably, the main
reasons for such a challenge are: (i) Due to the lacking of
clearly defined lanes, vehicles in intersectional traffic have
more flexible trajectories than those driving along well-
defined, unidirectional lanes. (ii) Intersectional traffic sim-
ulations involve many more dynamic environment factors,
including heterogeneous vehicles mixed with pedestrians,
than freeway traffic simulations.

Inspired by the above challenges, we propose a novel
deep learning-based framework to simulate and edit in-
tersectional traffic (refer to Fig. 1(c)). Specifically, we first
construct a high quality intersectional traffic dataset. Then,
our intersectional traffic simulation framework consists of
two main stages. (i) At the first stage, we process the
intersectional traffic data and convert it into a compact
yet effective representation for deep learning, including the
introduction of a novel grid coordinate system to encode
dynamic intersectional environment and vehicle-vehicle in-
teractions. With respect to the complexity of the involved
vehicles, our representation can handle heterogeneous ve-
hicles mixed with pedestrians. (ii) At the second stage,
we employ the combination of convolution neural network
(CNN) and recurrent neural network (RNN) to learn the
Forward Difference (FD) velocities of vehicle trajectories
in intersectional traffic. The trajectories learned from our

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

(a) (b)

(c) (d)

Fig. 1. (a) The ground truth data of traffic trajectories in an intersection.
(b) An example of intersectional traffic simulation by the well-known
traffic simulator SUMO [10]. (c) The traffic trajectories generated by
our approach. (d) Pre-defined lanes driving along by vehicles in SUMO.
Different trajectories are plotted with different colors.

model are more realistic and collision-free. Based on the
predicted FD velocities of each vehicle, we further use a
geometric method to obtain its Central Difference (CD)
velocities.

Through many experiments as well as comparative user
studies, we demonstrate that our approach can generate
more realistic traffic in intersections than existing traffic
simulators. Besides simulating novel intersectional traffic,
we also demonstrate how our method can be used to edit
existing intersectional traffic, including traffic simulation
in intersections with new terrain and the trajectories of
selected vehicles. Fig. 2 shows some example results by our
approach: a 3D intersectional traffic simulation with a street
view and an edited traffic animation with a bird’s-eye view.

To the best of our knowledge, this work is the first re-
ported system to simulate intersectional traffic without lanes
and handle vehicles trajectories mixed with pedestrians in
intersectional areas. The specific contributions of this work
can be summarized as follows:

• A new data representation tailored for deep learn-
ing is introduced to encode heterogeneous vehi-
cles mixed with pedestrians in intersectional traffic,
which embeds vehicle-vehicle interactions.

• A deep learning-based framework is proposed to
learn vehicle trajectory patterns in intersections.

• A new user editing technique is introduced to effec-
tively edit specific vehicles in intersections.

2 RELATED WORK

In this section, we first survey existing rule-based and data-
driven traffic simulation methods. Next, we review recent
research efforts on intersectional traffic simulation. Finally,
we survey human trajectory prediction methods with deep
learning networks.

2.1 Traffic Simulation
Due to the ubiquity of traffic in real world, many traffic
simulation techniques have been proposed during the past

decades. Generally speaking, there are three types of traffic
simulations based on the level of simulation details: micro-
scopic, mesoscopic, and macroscopic. Also known as agent-
based methods, microscopic simulation treats each vehicle
as a discrete autonomous agent with pre-defined rules [16],
[17], [18], [19]. In particular, the Intelligent Driver Model
(IDM) [6] and lane-changing model [20] are two notable
methods. Existing microscopic methods have been recently
improved to generate more flexible continuous traffic flow
[5], [21]. Mesoscpic methods use Boltzmann-type mesoscale
equations to simulate traffic dynamics [18], where traf-
fic flow is viewed as continuum dynamics like fluid or
gas. Therefore, nonlinear scalar conservation law or other
second-order systems of equations derived from the equa-
tions of gas dynamics can be used to describe the regulations
of vehicles [2], [17], [22], [23], [24]. A recent extension of
macroscopic methods [3] can animate detailed traffic flow.
However, these techniques have been primarily focused on
traffic simulation on freeways. As a result, most of the traffic
simulations studied by them, are the decision-making of
acceleration/deceleration in car-following or lane-changing
scenarios.

Ignoring context-adaptive characteristics during driving,
the rule-based methods mentioned above often fall short
of simulating realistic traffic due to the inherent simplicity
of pre-defined rules. To address the limitation, researchers
have explored data-driven techniques in traffic simulation
in recent years [25], [26], [27], [28], [29], [30]. With the
concept of “virtualized traffic”, Sewall et al. [31] reconstruct
traffic flow with individual-specific driving characteristics
learned from spatio-temporal data acquired with sensors.
Wilkie et al. [4] use an agent-based traffic simulator to
generate traffic animations to match the preset sparse traffic
conditions statistically. A video-based approach by learning
the specific driving characteristics of drivers was proposed
in [32]. The works of [33], [34] reconstruct and visualize
city-scale traffic animations through statistical learning. In
the work of [35], a data-driven framework is introduced
to perform the decision-making and execution processes
for lane-changing in traffic simulations. In addition, some
recent efforts have been conducted to simulate mixed traffic
(i.e., mixing vehicles/motorcycles or pedestrians) [36], [37].

Compared with traffic simulations on freeways, very few
studies on intersectional traffic simulation have been con-
ducted partially due to the lacking of any publicly available
intersectional traffic datasets. Specifically, in the few existing
works of [8], [9], [10], vehicle trajectories through intersec-
tional areas need to be pre-defined, and signal-controlled
queues are built for vehicles to drive along different direc-
tions. Not surprisingly, they fall short of generating realistic
intersectional traffic due to their fundamental dependence
on empirically pre-defined rules.

2.2 Crowd Editing

In recent years many approaches have been proposed to
interactively edit crowds or the motions of multi-characters.
Kwon et al. [38] use a graph structure to edit crowd groups,
where the vertices denote the positions of individuals at spe-
cific frames and the edges encode neighborhood formations
and moving trajectories. Later, researchers further extended

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Fig. 2. Example results by our approach: 3D intersectional traffic simulation with a street view (left) and the edited traffic with a bird’s-eye view
(right).

this technique to interactively manipulate the synchronized
motions of multi-characters in more complex scenarios [39],
[40]. Kulpa et al. [41] proposed the imperceptible relaxation
of collision avoidance constraints for interactive virtual
crowd editing. Kim et al. [42] employ a cage-based method
for large-scale crowd editing, where animators are allowed
to edit existing crowd animations intuitively with real-time
performance while maintaining complex interactions be-
tween individuals. A novel local interaction algorithm with
a new context-aware, probabilistic motion prediction model
for crowd simulators is proposed in [43]. Karamouzas et
al. [44] proposed a simple and effective optimization-based
integration scheme for implicit integration and apply this to
crowd simulations. Whether and how the above crowd edit-
ing methods can be robustly generalized to traffic animation
editing (in particular, intersectional traffic animation) has
not been experimented and validated.

2.3 Human Trajectory Prediction
Predicting human motion behavior is a critical yet chal-
lenging task in the domains of video understanding and
autonomous driving. The key problem that human tra-
jectory prediction in a crowded space needs to handle is
to analyze human-human interactions. The works of [45],
[46] use Gaussian Processes and Bayesian nonparametric
approaches, respectively, to learn the motion trajectories
of pedestrians in video. These learned motion trajectories
avoid obstacles but ignore human-human interactions. By
inferring traversable regions using semantic scene infor-
mation, Kitani et al. [47] forecast the future trajectories of
pedestrians. Alahi et al. [12] proposed a social pooling layer
to encode human-human interactions to predict human tra-
jectories. This work has been extended in [48], [49] to include
static obstacles and dynamic agents. But only the dynamic
agents in the neighborhood are considered. Fernando et al.
[50] use the Long Sort Term Memory (LSTM) framework
to predict human trajectories and consider all agents in the
environment. Gupta et al. [14] proposed socialGAN, a recur-
rent sequence-to-sequence model, to predict the trajectories
of pedestrians. In their method, a novel pooling mechanism
is introduced in the network to aggregate information across
people. However, all the above human trajectory prediction
works treat each subject as a point and assume that each
subject during prediction has similar behavior patterns. By
contrast, the behaviors of vehicles in an intersection react

CNN CNN CNN

......LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Data FormatGrid MapAcquisition

Training Central Difference
Velocity

Traffic Simulation Traffic Editing

V
∆

Data Processing

Trajectory Learning

Results

Fig. 3. Schematic illustration of our deep learning based framework for
intersectional traffic simulation and editing

not only to heterogeneous vehicles but also to pedestrians.
As a result, these methods cannot be directly applied for
intersectional traffic simulations.

3 OUR APPROACH OVERVIEW

Our framework consists of three main steps: data acquisition
and processing, trajectory learning, and simulation process,
described below. Fig. 3 shows the schematic view of our
framework.

Data Acquisition and Processing: After intersectional traf-
fic video data acquisition and processing (detailed in Sec.
4.1), we further convert the data to a format particularly
tailored for deep learning (Sec. 4.2). Different from traffic
simulations on freeways, the vehicles in an intersection

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

do not have strictly-defined lanes to follow and have a
high readiness to respond to potential unanticipated events.
The characterization of heterogeneous vehicles mixed with
pedestrians also makes various existing traffic data repre-
sentations that are originally designed for freeway traffic
simulations unsuitable for our work. In order to address this
issue, we introduce a grid coordinate system called grid map
to encode the relevant driving information of heterogeneous
vehicles (Sec. 4.2). A window with five channels sliding
on the grid map can generate an environment matrix for
each vehicle. In addition, the destination of a vehicle and
its current driving states together are called vehicle identity
(Sec. 4.2), which can also affect its trajectory passing through
an intersection. The environment matrices together with the
vehicle identities are inputs to the following modules.

Trajectory Learning: Based on the above inputs, we first
build a CNN with three convolution layers and three
pooling layers (Sec. 5.1) to reduce the dimension of the
environment matrices. Then, with the environment feature
vectors outputted from the CNN as one of the inputs, we
train a two-stack-layers RNN, with LSTM as the memory
cell to store the long term task-relevant data, to learn the
FD velocities of vehicle trajectories (Sec. 5.2). Besides the
FD velocities in trajectory, the CD velocities of each vehicle
also need to be considered. Due to physical rules, each
vehicle cannot drive towards any direction instantly. In
this work, we choose to use the tangential vector of the
vehicle’s historical driving path to approximate its current
CD velocities (detailed in Sec. 5.4).

Traffic Simulation and Editing: After the above deep learn-
ing model is learned (Sec. 5.3), we can simulate and edit
intersectional traffic (Sec. 5.5). Given the initial states of an
intersection, our framework can simulate the traffic until
all the vehicles drive through the intersection. Also, by
allowing users to edit vehicles (e.g., add new vehicles,
remove existing vehicles, or modify the trajectories of some
vehicles), our method can be directly used to generate new
traffic simulations in the intersection. In this process, the tra-
jectories of the edited vehicles and those of the neighboring
vehicles are re-calculated by our method.

4 TRAFFIC VIDEO DATA ACQUISITION

We recorded a video dataset containing vehicles’ trajectories
at a city intersection. The intersectional area was approxi-
mately 96 meters × 54 meters. We used a drone to hover
at 72 meters above the intersection, as statically as possible,
to record vehicles and pedestrians passing through the area
from a top-down view. A total of 2611 seconds of video data
with a 30 fps frame rate was acquired.

4.1 Trajectory Data from Traffic Video

In order to obtain accurate vehicle trajectories from the ac-
quired video data, we employed a visual tracking algorithm,
the Multi-Domain Convolutional Neural Networks (MD-
Net) [51], to track the locations of vehicles and pedestrians
in each video frame. We used the center of the tracking
box of each vehicle or pedestrian as its location. After the
automated video tracking, we also manually checked and
corrected any mis-tracked places for every frame to ensure

t− 1
t

t + 1
Lt

Lt−1 Lt+1

∆t

V tV t−1

Fig. 4. Illustration of the FD velocity V and CD velocity ∆ of a vehicle.
The black dashed line is the path of vehicle at steps t−1, t, and t+1. The
position of the vehicle at each step is denoted as L = (Lx, Ly). So the
FD velocity of the vehicle at t is discretely calculated as V t = Lt+1−Lt

(red arrow). In order to generate smooth trajectories, we further use
Gaussian smoothing to remove potential tracking noise and high fre-
quency information. The position of the vehicle after smooth at each
step is denoted as L̂ = (L̂x, L̂y). And the CD velocity of the vehicle at t
is ∆t = L̂t+1 − L̂t−1 (purple arrow).

the data quality. The size of the vehicles that are specifically
studied in this work is approximately 4.5 meters in length
and 2 meters in width, since such vehicles (e.g., sedans
and sports utility vehicles) widely exist in real-world daily
traffic. Other vehicles including buses and articulated buses
are not considered in this work due to their significantly
different driving patterns in intersections. To this end, the
obtained dataset contains 26110 frames of vehicle trajectory
data, down-sampled to 10 frames per second.

Also, traffic light plays a key role for traffic in inter-
sections. However, the goal of this work is to learn the
driving patterns of vehicles with the assumptions of the
no-lane-constraint and heterogeneous traffic agents. The
traffic light can be treated as a separate constraint in our
simulations. Following the traffic rules, vehicles at red light
are forced to stop. In order to ensure data quality, we
chop the traffic video into fragments where vehicles passed
through intersections with the same traffic light conditions.
The trajectories of all the vehicles are labelled. And we only
learn the trajectories of vehicles whose driving behaviors
are only affected by the driving environment and under
green traffic light. Those vehicles affected by traffic light
or some other self-factors (e.g., the stopping of a taxi due
to the loading/unloading of passengers) are not considered,
and instead they are considered as the known inputs in our
model.

To this end, in our processed dataset, we have 1347
vehicles driving straight, 426 vehicles turning left, and 471
vehicles turning right. To counter balance different driving
directions, we rotated the data for the four possible incom-
ing driving directions to obtain 4 times of data for our deep
learning-based framework. Because of the different driving
patterns of the vehicles passing through intersections and
the non-uniform distribution of the data, we classify all
the vehicle trajectories into three classes: drive straight,
turn right, and turn left. For each vehicle trajectory, we
use Gaussian smoothing to remove tracking noise and high
frequency information.

4.2 Data Representation for Deep Learning

Based on the above vehicle trajectories, we need to first con-
vert them to a data representation that is particularly suit-
able for deep learning. For traffic simulation on freeways,
each vehicle needs to calculate its velocity and acceleration
at each frame. Different from the vehicles that drive along

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

explicitly pre-defined lanes, those vehicles passing through
intersections typically do not drive on explicitly pre-defined
lanes. Based on the discrete vehicle trajectory data, in this
paper, we use the FD velocity (denoted as V) and the CD
velocity (denoted as ∆) to describe the detailed movement
of a vehicles (refer to Fig. 4). Here, the FD velocity (the red
arrows in Fig. 4) is used to calculate the next position that
the vehicle drives towards based on the current position.
The CD velocity (the purple arrows in Fig. 4) is used to
represent the approximated tangential vector of the driving
path at each step. With such representations, the FD velocity
ensures the details of movement such as collision avoidance.
On the other hand, the CD velocity ensures the smoothness
of the simulated trajectory.

Environment Matrix: Visual depth maps have been em-
ployed in various applications with deep learning tech-
niques [52], [53], [54]. Analogously, the vehicles passing
through an intersection rely on the visual perception of
the objects (e.g., vehicles, pedestrians, and obstacles) in
the neighborhood, such as their velocities and positions.
Inspired by the concept of visual depth maps and the
characteristics of vehicle-environment interactions, we in-
troduce a grid coordinate system, called grid map, in inter-
sections to encode the interactions between heterogeneous
vehicles mixed with pedestrians. As illustrated in Fig. 5,
a trajectory in the grid map is in XY-plane and we map
all the trajectories to the corresponding grid map. With
the aid of the grid map, searching for neighboring objects
(i.e., vehicles, pedestrians, or obstacles) of a vehicle can be
efficiently done. At each step, in order to describe the driv-
ing environment around a vehicle, an environment matrix
M = (Vx, Vy, Np, Φ, χ) is built based on the grid map of
the vehicle. The environment matrix consists five channels,
each of which has a resolution of 31 × 31 and occupies
an area of approximately 31 × 31 meters. Each channel
extends 15 grids along X-axis and Y-axis bilaterally from the
grid where the vehicle’s center is located. Specifically, we
use OA to denote vehicle A. Its first two channels Vx and
Vy are the FD velocity along the lateral axis (X-axis) and
the FD velocity along the vertical axis (Y-axis), respectively.
Np indicates the numbers of pedestrians and bicycles in
each grid. Φ represents the road grid map around OA. The
value of a grid is set to 1 if the vehicle can drive into it.
χ represents the visible area: the value of a grid is set to
1 if it is visible from the drone’s perspective. Through the
environment matrices, original vehicle-vehicle/pedestrian
interactions and vehicles kinematics are together encoded.

Vehicle Identity: When a vehicle drives through an in-
tersection, the destination of its trajectory is its location
at the last step. For OA, we use vehicle identity I =
(vx, vy, cosα, cosβ) to represent the vehicle’s driving infor-
mation towards the destination at step t. vx and vy represent
the FD velocities along the lateral axis (X-axis) and along the
vertical axis (Y-axis) at step t, respectively. We also define α
and β to describe the relationship between the CD velocity
∆ and motion. As illustrated in Fig. 6, α is the angle between
the CD velocity at t and the CD velocity at the final step t′.
β is the angle between the CD velocity and the vector ~p (Fig.
6) from the position of the vehicle at t to the destination of
the trajectory at t′.

Driving State: For OA, its driving state St = (M, I) at

A

B C

Video Data Grid Map

Vx Vy Np Φ χ

Fig. 5. Illustration of the Grid Map in this work. For OA, a window
with size 31×31 is use to describe the surrounding area. We build an
environment matrixM = (Vx, Vy , Np, Φ, χ) including five channels. The
grayscale of a grid in Vx (or Vy) visualizes vx (or vy) of OB and OC .
The grayscale of a grid in Np denotes the number of pedestrians and
bicycles. The grids in Φ and χ represent the area into which OA can
drive and the visible area from the drone’s perspective, respectively. The
black color of a grid means its value is 1.

t0

t
t′

t0

t
t′α β

∆t′

∆t

~p

(a) (b)

Fig. 6. Illustration of the CD velocity of a vehicle. (a) and (b) are the
schematic view of α and β. The blue arrows denote the CD velocity
at each step. t′ is the last step along the path and the purple arrows
denote the CD velocity at t′. The green arrows ~p are the vectors from
the position of the vehicle at a step t to its position at t′. α is the angle
between the CD velocity at t and the CD velocity at t′. β is the angle
between the CD velocity at t and vector ~p.

step t consists of its environment matrix M and vehicle
identity I .

Vehicle Trajectory: The trajectory status of OA at step t:
Γt = (V t,∆t), where V t and ∆t respectively denote the FD
velocity and the CD velocity of the vehicle at step t. Here
we define V t = (vtx, v

t
y) and ∆t = (∆t

x,∆
t
y). The trajectory

status at t is decided by the historical driving states.
Therefore, the objective of our framework is to learn a

mapping function f from the driving states to the vehicle
trajectory, described as follows:

Γt = f(St−1, St−2, · · ·). (1)

5 TRAJECTORY LEARNING

Due to the different driving patterns of the vehicles passing
through intersections, our framework handles the cases of
driving straight, turning right, and turning left, separately.
For each case, the architecture of the neural network is the
same; only the training data are different.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

31×31

C
onvolution

1
M

axPooling
1

5

16×16

C
onvolution

2
M

axPooling
2

8

8×8

C
onvolution

3
M

axPooling
3

16

4×4
32

R
eshape

512

εM

Fig. 7. Illustration of the used CNN architecture. Convolution 1 contains
8 filters of size 5×5. Convolution 2 contains 16 filters of size 5×5.
Convolution 3 contains 32 filters of size 5×5. The input to Convolution 1
is M with size 31×31×5. After the Convolution 1 and Max Pooling 1, its
size becomes 16×16×8. After the Convolution 2 and Max Pooling 2, its
size becomes 8×8×16, and after the Convolution 3 and Max Pooling 3,
its size becomes 4×4×32. Finally, we reshape the output of Convolution
3 and Max Pooling 3 to a 1×512 vector.

In order to learn trajectories based on the driving state
St = (M, I) at step t, we build a network consisting of
CNN-RNN: the CNN is used to extract features from the
environment matrix M , and the RNN is designed to learn
the FD velocities of the trajectories from sequence data.
After training the networks, we use a geometric method to
calculate the CD velocities of each vehicle.

5.1 CNN Network Structure
To construct the environment features for trajectory learn-
ing, we use a CNN to extract features (denoted as ε) from
the environment matrix M . Specifically, the CNN consists
three convolutional layers and three pooling layers. Each
convolutional layer performs a one-dimensional convolu-
tion over the matrix independently. The input of the CNN
is the environment matrix M = (Vx, Vy, Np, Φ, χ) and the
output of the CNN is the environment features ε that contain
the current driving environmental information.

Fig. 7 illustrates the architecture of the used CNN.
At each step, the CNN repeatedly applies convolution
and max pooling onto the environment matrix M =
(Vx, Vy, Np, Φ, χ) from bottom to top. One convolutional
layer and max pooling layer can be described as:

Φ(X) = σr(Ψ(X ~W † + b†)), (2)

where W † ∈ Rl×n is the weights matrix initialized to
some small random values, b† ∈ Rn is the bias initialized to
zero, l and n represent the numbers of units in two adjacent
layers, ~ is a convolution operation on X , and Ψ denotes a
max pooling operation that is used to reduce the dimension-
ality of the output from the previous convolutional layer.
Ψ takes the maximum of each adjacent pair grids. σr(∗) is
a nonlinear operation ReLu(∗) = max(0, ∗). To this end,
the environment matrix M is transformed and reduced to
4× 4× 32, which is further reshaped to a 1× 512 vector.

5.2 RNN Network Structure
To generate the FD velocities of the vehicle trajectory, we
use a RNN on top of the combination of the environment

......
LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

CNN CNN CNN

ε1 ε2 εTI1 I2 IT

V T+1

t = 1 t = 2 t = T

Fig. 8. Illustration of the used RNN architecture. At each step t, the
shape of εt is the 1 × 512 vector from CNN. Together with It whose
size is 1 × 4, a fully connected layer is built on top of them to generate
the input of RNN. After a two-stack-layers RNN, the output from LSTM
cell at t = T , is utilized as an input to a fully connected layer. After fully
connected layer its size becomes 1 × 2, namely V T+1.

features ε and vehicle identity I . As illustrated in Fig. 8, the
used RNN has two stack layers. At time step t, the driving
state St = (M, I) after CNN is transformed to (ε, I). For a
sequence of ε and a sequence of I , we can easily map two
sequences and build a fully connected layer on top of it. We
take the output from the fully connected layer as the input
to the RNN.

We employ the LSTM [55] as the basic memory cell of
each layer in RNN. Each cell is explicitly controlled via an
input gate, an output gate, and a forget gate. The network
employing memory cells overcomes the vanishing and ex-
ploding gradients in traditional RNNs. It also facilitates the
long term storage of task-relevant data. Previously, LSTM
has been successfully used for human motion prediction
and natural language processing [56], [57], [58].

At step t, we denote the input and output of a memory
cell in one LSTM as Ct

I ∈ Rh and Ct
O ∈ Rh. We use Xt ∈

Rd and Ht ∈ Rh to represent the input and output of one
LSTM. All the equations we employ in a memory cell are as
follows:

For input gate : Gt
I = σg(WIX

t + UIH
t−1 + bI), (3)

For forget gate : Gt
F = σg(WFX

t + UFH
t−1 + bF), (4)

For output gate : Gt
O = σg(WOX

t + UOH
t−1 + bO), (5)

For cell input : Ct
I = σc(WcX

t + UcH
t−1 + bc), (6)

For cell output : Ct
O = Gt

I ◦ Ct
I +Gt

F ◦ Ct−1
O , (7)

For output of LSTM : Ht = Gt
O ◦ σh(Ct

O). (8)

Here Gt
∗ ∈ Rh (with ∗ ∈ {I, F,O}), and W∗ ∈ Rh×d is

a weights matrix that connects Xt to the ∗ gate and the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

cell input. U∗ ∈ Rh×h is a weights matrix that connects
Ht−1 to the ∗ gate and the cell input. b∗ ∈ Rh is the
bias of ∗ gate and the cell input. σg is a sigmoid function
and both σh and σc represent hyperbolic tangent functions.
The operator ◦ denotes the Hadamard product (entry-wise
product). Specifically, the subscripts d and h refer to the
number of input features and the number of hidden units,
respectively. In our experiments, we choose d = 64 and
h = 84.

At step t = T , the output of LSTM, HT , is utilized as an
input to a fully connected layer. The FD velocity V T+1 of
the vehicle trajectory at step T + 1 can be calculated by

V T+1 = HTW ◦ + b◦. (9)

Here W ◦ ∈ Rh×s is the weights matrix between the LSTM
and the last fully connected layer, initialized to some small
random values, b◦ ∈ Rs is the bias of the last fully connected
layer, which is initialized to zero, and s denotes the dimen-
sion of V . We choose T = 8 and s = 2 in our experiments.

5.3 Training

We train the whole CNN-RNN together. Network learning
process can be regarded as optimizing the following differ-
entiable error function:

E(W, b) =
ΣN

k=1Ek(W, b)

N
, (10)

where N represents the number of training data sequences,
and W and b represent the weights matrix and bias in CNN-
RNN, respectively. Our training criterion is to minimize the
squared loss between the output V and the ground truth
V̂ . Specifically, for an input sequence of driving states S =
(M, I), the loss function takes the following form:

E(W, b) =
ΣN

k=1Ek(W, b)

N
=

ΣN
k=1

∥∥∥V T
k − V̂ T

k

∥∥∥2
N

. (11)

Iteratively, we calculate the error gradient and update
the network. We optimize the network using stochastic
gradient descent (SGD). The parameters in the training
process include batch size (512), learning rate (0.001) and
momentum(0.9). To prevent over-fitting, we use a dropout
strategy [59] with the dropout ratio = 0.8. The optimization
process continues until it converges or after 20000 epochs.
For each driving pattern of the vehicles passing through
intersections, the vehicle trajectory sequence data are ran-
domly divided into three groups: 70% for training, 15% for
validation, and 15% for test. We train our networks on an
off-the-shelf desktop computer with 2.7 GHz Intel Core I5-
6400K CPU and a GeForce 1060 GPU (6GB memory). Our
framework was implemented on the Tensorflow platform
[60].

5.4 Generate the CD Velocities

Besides the above FD velocity V , we also need to calculate
the CD velocity ∆ for each vehicle. We use the tangent
vector of the driving path to represent the current CD
velocity. During simulation, the position of a vehicle at
t + 1 is still unknown. Therefore, we assume that the CD

velocities of the vehicle at two adjacent steps are sufficiently
close due to the motion continuity. We use the CD velocity
at the previous step as the CD velocity at current step.

We first use a Gaussian smoothing filter to process the
historical position data and remove high frequency infor-
mation. Then, ∆t−1 = (∆t−1

x ,∆t−1
y) is calculated using the

following equation (also see Fig. 4).

∆t−1
x = L̂t

x − L̂t−2
x , (12)

∆t−1
y = L̂t

y − L̂t−2
y , (13)

where L̂t
x and L̂t

y denote the position of the vehicle at step
t along the lateral axis (X-axis) and the vertical axis (Y-axis)
processed with Gaussian smoothing, respectively.

It is noteworthy that our current method does not con-
sider any physical constraints of vehicles. Therefore, we
manually add some control policies to address this issue:
The FD velocity of a vehicle trajectory needs to satisfy the
physical constraints of the maximum acceleration, maxi-
mum deceleration, and the steering limitation of the vehi-
cle. Our environment matrices could encode the vehicle-
vehicle/pedestrian interactions in the local neighborhood,
which contribute to avoid collisions. More collision avoid-
ance examples are presented in Sec. 6.2. Furthermore, if
there is an inevitable collision, we will randomly select and
stop one of the involved vehicles.

5.5 Simulation
Once the above framework is trained, we can use it to
simulate intersectional traffic. Based on a provided driving
state sequence as the initial condition, our method can sim-
ulate the detailed motions of the vehicles passing through
intersections.

Algorithm 1 details the process of intersectional traffic
simulation using our method. Given an initial vehicle set
D including the initial states of each vehicle, we first cre-
ate a grid map for each simulate step t. Here, the initial
states of each vehicle include arrival time, arrival position,
arrival CD velocity, arrival FD velocity, departure position,
and departure CD velocity. So each vehicle can be easily
classified based on its arrival and departure positions. For
each vehicle in D, we collect the sequence of driving states
S = (M, I) at previous T steps. After feeding the CNN
with sequence of M (denoted as κM), we map the sequence
of ε as the output of CNN with sequence of I (denoted
as κI). Then, we feed the mapping sequence to RNN and
calculate the FD velocity V of the vehicle trajectory, which
is further refined using the rules of maximum acceleration
and maximum deceleration. Finally, we approximate the CD
velocity ∆ and write the trajectory Γ = (V,∆) into the
current grid map. Iteratively, we can simulate the whole
scenario until all the vehicles in D have driven through the
intersection. Note that the step used in the simulation is the
same as the sampling interval in our data (0.1s).

6 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we show some experimental results by our
method. By specifying the trajectories of some pedestrians, a
new intersectional traffic simulation result can be generated

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

Algorithm 1 Intersectional Traffic Simulation Process
Input: D;

1: create Grid Maps Π
2: t← T + 1
3: while D is not empty do
4: for Oi ∈ D do
5: for i = 0; i < T ; i+ + do
6: π ← Π [t− i]
7: Search π for M = (Vx, Vy, Np, Φ, χ)
8: Search π for I = (vx, vy, cosα, cosβ)
9: κM [T − i]←M

10: κI [T − i]← I
11: end for
12: choose a CNN-RNN network class τ
13: V ←feed the CNN-RNN network τ with κM and

κI
14: V ← V after control policy is applied
15: ∆← CD velocity
16: store V and ∆ in π
17: t = t+ 1
18: if Oi arrive destination then
19: delete Oi from D
20: end if
21: end for
22: end while

by our system. Furthermore, by specifying the terrain of the
intersection and the initial states of vehicles, our method
can also simulate traffic scenes with different terrains. The
corresponding animation results are enclosed in the supple-
mental demo video.

Collision avoidance: By encoding vehicle-
vehicle/pedestrian interactions within the local
neighborhood of each vehicle, our method can implicitly
avoid most collisions between vehicles and between
vehicles and pedestrians. Other collisions can be avoided
through pre-defined physical rules. For example, in a typical
simulation consisting of 77 vehicles and 727 frames, among
a total of 7547 time steps that need to be predicted, only 401
(5.3%) time steps are corrected with pre-defined physical
rules. We show some examples in Fig. 9. The vehicle OA in
Fig. 9(a) drives straight and decelerates to avoid collisions.
The vehicle OD in Fig. 9(b) drives in the same lane as OC .
OD initially drives with a relatively low FD velocity to
avoid potential collisions with OC . The vehicle OF in Fig.
9(c) also decelerates to avoid collisions with the bus OH

and the coming vehicle OI from the opposite direction.
The vehicle OJ in Fig. 9(d) decelerates to avoid collisions
with a group of pedestrians, and then accelerates towards
the destination. These examples demonstrate that the
synthesized vehicles by our method can effectively avoid
collisions with other vehicles or pedestrians.

6.1 Runtime Performance
Table 1 shows the runtime performances of our method and
the average runtime of generating the trajectory for a vehicle
at one step. Majority of the computational time is used to
search the grid map for M and I in order to learn V , and
to calculate the CD velocity ∆ based on the historical trajec-
tories. We also utilized the mean absolute percentage error

(MAPE) and root mean squared error (MSE) to measure the
performance of our method.

In order to decrease the errors caused by non-uniform
data distribution, we classified all vehicle trajectories into
three category and train a different model for each cat-
egory to predict the FD velocity. We also compared our
individually-trained models with a global model that is
trained using all vehicle trajectories. The comparison results
are shown in Table 1. Clearly, the prediction errors of vx and
vy by the individually-trained models are generally smaller
than the global model. This is because the individually-
trained models can better reduce the impact of nonuniform
data distribution.

As shown in Table 1, the computational efficiency of
our approach is relatively low, mainly due to (1) the un-
optimized and un-parallelized implemention of our ap-
proach, and (2) the relatively high computational cost of
our approach. The major computational cost per vehicle
includes GridMap construction and trajectory prediction for
subsequent time steps, and the GridMap construction step is
more computationally expensive than the trajectory predic-
tion step. In order to predict detailed vehicle movements,
we used a 31 × 31 GridMap, which has a relatively high
granularity.

6.2 Comparisons with Ground Truth
In order to evaluate the effectiveness of our method, we
compared the vehicle trajectories simulated by our method
and the ground truth. Specifically, given the trajectory data
of pedestrians and vehicles of other types (if any) as well as
the initial driving states of vehicles of interest, our method
can automatically generate intersectional traffic trajectories.

The trajectories of all three different driving patterns
in intersections were compared. The vehicles turning right,
driving straight, and turning left are denoted as Or , Os, Ol,
respectively. Without loss of generality, we illustrate four
specific steps in Fig. 10. We mainly compared the trajectories
in vx, vy and ϑ. Here, We defined ϑ as

ϑ = sign(∆t ×∆t′)× α. (14)

ϑ is used to compare the simulated CD velocities of a vehicle
with the ground truth. ∆t′ is its FD velocity at the last step.
With the driving towards the destination in an intersection,
ϑ is expected to gradually approach 0. Therefore, sign(∆t×
∆t′) can reflect its relative relationship with the destination
at each step.

As shown in Fig. 10, compared with the ground truth,
the FD velocities along X-axis and Y-axis (vx, vy) by our
method are roughly close to the ground truth. Based on
the driving environment at current step, the vehicle can
adjust its FD velocity in a timely manner. The simulated
CD velocities also show similar patterns as the ground truth.
For animation comparisons, please refer to the supplemental
demo video. It is noteworthy that our framework can only
learn the trajectories of the vehicles whose behaviors are
only affected by driving environment and under green
traffic lights. In order to better visually compare our method
with the ground truth, the traffic light condition is set to
be the same as the ground truth. The vehicles at red light
will be forced to stop. For example, from 0’49” to 1’30”

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

0 tmax

(a) (b)

(c) (d)

(a-v)

(b-v)

(c-v)

(d-v)

OA

OB

OA

OB

OA

OC

OD

OE

OC

OD
OE

OD

OF

OG

OH
OF

OG OH

OI

OF

OJ

OK OJ

OK

OJ

Fig. 9. Four collision avoidance examples by our method. The leftmost panel in each example shows the trajectories of all the vehicles. The middle
and right panels show the relative positions of the vehicles at two specific steps. Each black arrow indicates the driving direction of a vehicle.
Different color dots represent different steps. Dotted lines are the trajectories of vehicles and solid lines are the trajectories of pedestrians. OH

is a bus and ∗ denotes the specific step of a pedestrian. (a-v), (b-v), (c-v) and (d-v) plot the FD velocity curve of vehicles OA, OD , OF and OJ ,
respectively.

TABLE 1
Runtime performances of our method

RMSE MAPE TestData Runtime

individual integrated individual integrated Sample
Number

Frame
Number

Training
Time (hour)

Average Simulation Time
(per vehicle per step, second)vx vy vx vy vx vy vx vy

Drive Straight 0.0309 0.0289 0.0417 0.0398 0.0599 0.0673 0.0709 0.0994 3667 77469 10.547 1.535

Turn Left 0.0293 0.0304 0.0394 0.0425 0.0551 0.0679 0.0693 0.1112 1500 47475 6.988 1.632

Turn Right 0.0334 0.0348 0.0478 0.0480 0.0704 0.0881 0.0892 0.1114 1633 30724 5.863 1.647

in the supplemental demo video, only the vehicles driving
from north/south, and the white vehicle from east at 0’51”
are simulated by our method. In addition, the trajectories
of pedestrians, buses, articulated buses are taken from the
original traffic video data and used as the known inputs to
the grid map in our model for better visual comparisons.

Validation of the FD velocities: We use the validation of
the FD velocities to show the generalization of our model.
Specifically, the arrival FD velocities in the initial states of
all the vehicles are statistically shown in Fig. 11(b). Clearly,
all the arrival FD velocities is smaller than 2m/s. Without
loss of generality, we choose vehicle1 whose arrival FD
velocity v0 = 0.703m/s. Here, we separately set the arrival
FD velocities v′0 = 4v0, v′′0 = 5v0, v′′′0 = 6v0 for vehicle2,
vehicle3, vehicle4, respectively. As shown in Fig. 11(a), we
compare the predicted FD velocities under the same driving
environment. Although the arrival FD velocities in the initial
states are beyond the range of our dataset, the FD velocities
predicted by our method are still reasonable. This is because
the predicted FD velocities partially depend on the grid
map that captures the surrounding driving environment.
For animation results of the validation of the FD velocities,
please refer to the supplemental demo video.

Length of the generated trajectory: Furthermore, we use
ADE (average displacement error) to evaluate the generated
trajectories with different lengths (T). ADE is the mean
squared error between the points of a predicted trajectory
and the points of the corresponding ground-truth trajectory.
We conducted experiments for T = 6, 8, 10, 12, 14 sepa-
rately. As shown in Fig. 12, for those vehicles that turn left or
drive straight, the ADE performances are improved with the
increase of the trajectory length, since more historical trajec-
tory points can make better contributions to the trajectory
prediction. For the case of right turn, only when T <= 10,
the ADE performance continues to be improved with the
increase of the length. One sound explanation is that the
path of right turn is often substantially shorter than those of
left turn and straight driving and thus it has fewer historical
trajectory points for prediction.

6.3 Comparisons with Baselines

We further evaluated our method by quantitatively com-
paring it with four selected baseline methods that can be
adapted for intersectional traffic simulation, including the
well-known SUMO simulator [10], where the trajectories

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

(m
/s
)

(m
/s
)

(r
ad
)

(m
/s
)

(m
/s
)

(r
ad
)

(m
/s
)

(m
/s
)

(r
ad
)

Or

Os

Ol

t = t1 = 4s t = t2 = 8s t = t3 = 12s t = t4 = 16s
(a)

t = t5 = 1.6s t = t6 = 3.2s t = t7 = 4.8s t = t8 = 6.4s
(b)

t = t9 = 3.8s t = t10 = 7.6s t = t11 = 8.4s t = t12 = 11.2s

(c)

Fig. 10. Comparisons of the traffic trajectories simulated by our method and ground truth. (a), (b) and (c) separately show the trajectory of a vehicle
that is turning right, driving straight, and turning left, denoted as Or , Os, Ol, respectively. In each paired comparison (i.e., (a), (b), or (c)), the top
row shows the simulation result and the bottom row shows the ground truth trajectory. Also, the diagrams at the right compare the trajectories in vx,
vy , ϑ between the simulation result and the ground truth.

 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0
time(0.1s)

1.5

3.0

4.5

6.0

v(
m

/s
)

vehicle1
vehicle2
vehicle3
vehicle4

 0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0
vehicles

0.0

0.5

1.0

1.5

v 0
(m

/s
)

(a)

(b)

Fig. 11. (a) The predicted FD velocities with different arrival FD velocities
in the same driving environment. (b) The statistical results of arrival FD
velocities in the initial states of all the vehicles in the training dataset.

6 8 10 12 14
length of sequence

7.50e-04

1.00e-03

1.25e-03

1.50e-03

1.75e-03

2.00e-03

2.25e-03

2.50e-03

2.75e-03

3.00e-03

AD
E

turning right
turning left
driving straight

Fig. 12. ADE of the resulting vehicle trajectories by training our model
with different lengths (T).

of the vehicles in an intersection are simulated with a car-
following model along pre-defined lanes; the basic Vanilla
LSTM (V-LSTM) [61], where each vehicle trajectory is pre-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

dicted independently, without considering interactions; the
Social LSTM (S-LSTM) [12], where each object is modeled
via an LSTM with a social pooling layer to encode interac-
tions; and the Social GAN (S-GAN) [14], which is a GAN
based encoder-decoder framework with a pooling mech-
anism to learn social norms. We describe our comparison
results below.

Quantitative metrics. In order to quantitatively compare
different methods, the first thing is to select quantitative
metrics. In this comparison, we selected the following two
metrics: (1) Average Displacement Error (ADE) to measure
the averaged trajectory difference, and (2) Final Displacement
Error (FDE) to measure the distance between the predicted
destination and the ground-truth destination at the end of a
vehicle trajectory. Table 2 shows the comparison results for
three types of driving behaviors in an intersection (i.e., drive
straight, turn left, and turn right) in terms of ADE and FDE.

Not surprisingly, the vehicle trajectories simulated by
SUMO had high ADE and FDE errors, because the vehi-
cles were simulated along pre-defined lanes with a car-
following model, which significantly simplifies real-world
intersectional traffic. The vehicles driving straight and turn-
ing left/right in the SUMO model use pre-defined lanes to
avoid collisions. If any potential collisions are in the range,
the vehicles will decelerate or completely stop in current
lanes, which is basically simplified to a queue system.
Similarly, the V-LSTM method also generated relatively high
prediction errors, since it cannot effectively encode vehicle-
vehicle/pedestrian interactions. The trajectory of each vehi-
cle is predicted based on its own historical positions.

Both S-LSTM and S-GAN performed much better than
SUMO and V-LSTM. To predict more complex trajectories, S-
LSTM and S-GAN can capture certain interactions between
vehicles and pedestrians. Our method performed better
than both S-LSTM and S-GAN significantly for all three
driving behaviors (turn left/right, and drive straight) in
terms of both ADE and FDE, because both S-LSTM and
S-GAN assume all vehicles and pedestrians have similar
behavior patterns. Both of them also ignore the vehicle
kinematics. By contrast, our method considers vehicle-
vehicle/pedestrian interactions within the local neighbor-
hood. Also, we input the relative-to-destination position of
each vehicle to the network at each step, which helps to
reduce the errors. By learning trajectories and the implicit
kinematics of each vehicle driving in intersections from
data, our method can produce more accurate trajectory
predictions.

6.4 Intersectional Traffic Editing

Our method can also be straightforwardly used to edit
existing intersectional traffic by modifying some vehicles’
trajectories, adding new vehicles, or deleting some existing
vehicles. Taking the modification of existing vehicles’ trajec-
tories as an example, the trajectory of a vehicle is decided
by M and I . Given a new (user-specified) destination for a
vehicle, at step t the angle between the vehicle’s CD velocity
and its CD velocity at the final step, α, will be changed
accordingly. Also, β, the angle between the vehicle’s CD
velocity and vector ~p (refer to Fig. 6) will be modified
according to different destinations. Simultaneously, the tra-

-80 -60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

-64 -63 -62 -61 -60 -59
8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

29 30 31 32 33 34 35 36 37

1

2

3

4

5

6

7

54 54.5 55 55.5 56 56.5 57 57.5 58
1.5

2

2.5

3

3.5

4

4.5

503’00”

02’38”

02’47”

(a)

(b)

(c)

Fig. 13. The middle panel visualizes the high dimensional initial state
data with t-SNE [62]. The blue scatter points represent the training
dataset. The green scatter points represent the validation dataset and
the test dataset. The red points represent the initial states of the corre-
sponding edited vehicles in V#1. (a)(b)(c) show some edited vehicles.
The right top of (a)(b)(c) displays the corresponding time in the supple-
mental demo video.

jectories of the vehicles with new destinations will also affect
the adjustments of the neighboring vehicles.

We selected two traffic video clips as test data (denoted
as V#1 and V#2, respectively). V#1 has a total of 73 vehicles
and V#2 has a total of 79 vehicles. To test our method, we
modified randomly selected 11 vehicles’ destinations in each
of them. Since our method can automatically adjust the tra-
jectories of neighboring vehicles, a total of 23 vehicles in V#1
were assigned with new trajectories and a total of 16 vehicles
in V#2 were assigned with new trajectories. Some 2D and 3D
edited animation results of V#1 are shown in Fig. 14. Based
the definition of the initial states of each vehicle in Sec. 5.5,
we use t-SNE [62] to visualize the high dimensional initial
states data in Fig. 13. Although some initial states do not
exist in our dataset, our framework can predict trajectories
according to current driving environment. Refer to the sup-
plemental demo video for the edited intersectional traffic
results. Similar with the aforementioned intersectional traf-
fic simulation, the same traffic light condition as the original
traffic video is used for better visual comparisons between
our edited result and the original video. The trajectories of
pedestrians, buses, and articulated buses are taken from the
original traffic video data and used as the known inputs
to the grid map. For example, from 2’31” to 3’14” in the
supplemental demo video, only the vehicles driving from
north/south, the red vehicle from west at 3’06” and the blue
vehicle from west at 3’08” are simulated by our method.
In the two examples, we only edited the specific vehicle
trajectories and the surrounding vehicles will also change
their trajectories accordingly.

6.5 Paired Comparison User Study

In order to further evaluate the effectiveness of our method,
we designed a paired comparison user study. V#1 and V#2
are randomly split into three scenes respectively (denoted
as Scene1, Scene2, Scene3, Scene4, Scene5, and Scene6). For
each scene, we generated 2 pairs of 3D traffic animation
(i.e., ground truth VS. traffic simulation result, and ground
truth VS. edited traffic result). To this end, we generated
18 intersectional traffic animations for this user study and
constructed 12 comparison pairs.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

TABLE 2
Quantitative comparisons of our method and the four baseline methods

Method SUMO V-LSTM S-LSTM S-GAN Ours

Metric ADE
(×10−2)

FDE
(×10−2)

ADE
(×10−2)

FDE
(×10−2)

ADE
(×10−2)

FDE
(×10−2)

ADE
(×10−2)

FDE
(×10−2)

ADE
(×10−2)

FDE
(×10−2)

Drive Straight 1.7703 3.5574 5.3580 7.9337 0.6922 1.3213 0.4651. 0.8370 0.2319 0.3796
Turn Left 2.3106 5.4953 6.6002 10.1907 0.7795 1.5775 0.3659 0.6011 0.1991 0.5149

Turn Right 2.6391 4.4936 5.4620 8.0288 1.1154 2.1969 0.3310 0.5986 0.3164 0.4144
Average 2.2400 4.5154 5.8067 8.7177 0.8627 1.6986 0.3873 0.6789 0.2491 0.4363

(a) (b)

(c) (d)

(e) (f)

Fig. 14. Comparisons between the ground truth (top row) and the traffic
editing results in 3D (middle row) and 2D scenes (bottom row). (a)(c)(e)
and (b)(d)(f) are traffic snapshots at two selected randomly steps in V#1.
The red rectangular boxes highlight the modified destinations of vehi-
cles. The yellow rectangular boxes highlight the neighboring vehicles
assigned with new trajectories.

We recruited 36 participants to participate in our paired
comparison user study. All of them are graduate students
in a university. Avoiding making forced and inaccurate per-
ception votes, they are required to perceptually select which
is the more realistic scene in each paired comparison, with-
out limiting watching time. In order to balance carryover
effects due to a small number of participants, we adopted
the Williams design latin square [63] to display the pairs
during the study. We use one-sample t-tests to determine
the 95% Confidence Interval (CI) and paired-sample t-tests
to compare the difference of the true mean of two sets of
data with 95% confidence. The conventional significance for
the entire analysis was determined at α = 0.05, two tailed.

Fig. 15 (a) shows the voting result of our user study for
the 6 comparison pairs between the ground truth and the
simulation results. A paired-sample t-test shows the differ-

GT VS. SIM GT VS. EDI
22 14Scene1 18 18

15 21Scene2 17 19

14 22Scene3 22 14

22 14Scene4 22 14

18 18Scene5 16 20

21 15Scene6 14 22

112 104Total 109 107

14 14
18

Average 14 14
18

GT SIM
1
1
3
5
7

vo
te

s

GT EDI
1
1
3
5
7

vo
te

s

(a) (b)

(c) (d)

Fig. 15. The experimental results of our user study. In (a) and (b), the
left black boxes and the right white boxes indicate the total number
of participants who voted for the corresponding method: Ground Truth
(GT), our Simulation results (SIM), and our Edited results (EDI). The
error bars in the average boxes indicate the 95% CI of the total number
of times when the participants voted the GT results. In (c) and (d), the
box and whisker plots show the distribution of the number of scenes
voted by each participant for the corresponding method.

ence of the true mean with 95% confidence between the
ground truth and the simulation results is not statistically
significant (p = 0.6656 > 0.05). Fig. 15 (c) shows the distri-
bution of the number of scenes voted by each participant.
The median of ground truth is measurably equal to that of
simulation; the lower and upper quartile of ground truth
and simulation are similar. This user study result indicates
that the simulation results and ground truth are visually
equivalent, to a large extent.

Similarly, Fig. 15 (b) shows the voting result of our user
study for 6 comparison pairs between ground truth and
the edited traffic results. A paired-sample t-test shows the
difference of the true mean with 95% confidence between
ground truth and editing is not statistically significant (p
= 0.9049 > 0.05). Fig. 15 (d) shows the distribution of the
number of scenes voted by each participant. The median of
ground truth is measurably equal to that of the edited traffic
results; the lower and upper quartile of ground truth and
the edited results are highly similar. The user study result
indicates that the edited traffic results and ground truth are

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

perceptually indistinguishable.

7 DISCUSSION AND CONCLUSION

We present a new deep learning-based framework to simu-
late and edit traffic in intersections. A new data representa-
tion containing heterogeneous vehicles mixed with pedes-
trians is proposed and tailored for deep learning, which
also captures the vehicle-vehicle/pedestrian interactions.
Our representation has a higher granularity. Traffic is driven
by the trajectories learned through CNN-RNN whose input
includes the driving environment and the intentions of
individual vehicles, defined as their environment matrices
and vehicle identities, respectively. By specifying novel des-
tinations and terrain, our method can be straightforwardly
used to edit traffic in intersections. In order to validate our
method, we compared our simulation and edited results
with ground truths and found that our results are visually
indistinguishable from the ground truth. Also, compared
with existing human trajectory prediction models that could
be adapted for intersectional traffic simulation, our method
outperformed them in terms of quantitative metrics.

Our current method has a few limitations. First, the
driving states of all previous steps are used as the inputs
to generate the vehicle trajectories at current step in the
simulation process, which could lead to accumulated errors
in long predicted sequences. Second, since as a pure data-
driven method, our current method does not contain any
physical implications; therefore, it may not be generalized
sufficiently to handle certain complex intersectional traffic
behaviors such as complex terrain in an intersection or crazy
driving. In order to learn more accurate vehicle behavior
patterns, we classify the vehicle trajectory data to driving
straight, turning left, and turn right, and then learn corre-
sponding different models to reduce the impact from the
non-uniform distribution of the trajectory data. However,
this may not be the optimal solution. Third, in our current
method, pedestrians and other types of vehicles are simply
treated as the inputs during our simulation; any potential
interactions between them are not considered.

There are a number of future directions to extend our
current framework. Algorithmically, we would like to opti-
mize and parallelize (via GPU or GPU+CPU) the current
framework to reduce the simulation time and improve
the accuracy of the simulated trajectories. Furthermore, a
more generalized model to combine all driving behaviors
including driving straight, turning left, and turning right, is
necessary. Our current framework treat traffic light signals
as a separate constraint. One potential solution is to extend
the grid map representation to encode traffic light signals.
Also, we plan to model the potential interaction among
vehicles, pedestrians, and other traffic factors as the future
work. Lastly, we plan to build a complete traffic editing sys-
tem to edit intersectional traffic with dynamically adjusting
terrains.

ACKNOWLEDGMENTS

This work is in part supported by the National Key Research
and Development Program of China (2017YFC0804900), the
National Natural Science Foundation of China (61532002),

the 13th Five-Year Common Technology pre Research Pro-
gram (41402050301-170441402065), the Science and Technol-
ogy Mobilization Program of Dongguan (KZ2017-06), and
US NSF IIS 1524782. Huikun Bi is also supported by a CSC
Fellowship.

REFERENCES

[1] Uber, “Uber movement,” https://movement.uber.com, 2017.
[2] M. J. Lighthill and G. B. Whitham, “On Kinematic Waves. II. A

Theory of Traffic Flow on Long Crowded Roads,” Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 229, no. 1178, pp. 317–345, 1955.

[3] J. Sewall, D. Wilkie, P. Merrell, and M. C. Lin, “Continuum traffic
simulation,” Computer Graphics Forum, vol. 29, no. 2, pp. 439–448,
2010.

[4] D. Wilkie, J. Sewall, and M. Lin, “Flow reconstruction for data-
driven traffic animation,” ACM Trans. Graph., vol. 32, no. 4, pp.
89:1–89:10, Jul. 2013.

[5] J. Shen and X. Jin, “Detailed traffic animation for urban road
networks,” Graphical Models, vol. 74, no. 5, pp. 265–282, 2012.

[6] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states
in empirical observations and microscopic simulations,” Physical
Review E, vol. 62, no. 2, p. 1805, 2000.

[7] A. Kesting and M. Treiber, “Calibrating car-following models
by using trajectory data: Methodological study,” Transportation
Research Record: Journal of the Transportation Research Board, vol.
2088, pp. 148–156, 2008.

[8] A. D’Ambrogio, G. Iazeolla, L. Pasini, and A. Pieroni, “Simula-
tion model building of traffic intersections,” Simulation Modelling
Practice and Theory, vol. 17, no. 4, pp. 625–640, 2009.

[9] “Mit intelligent transportation systems,” its.mit.edu/, 2011.
[10] K. Daniel, E. Jakob, B. Michael, and B. Laura, “Recent development

and applications of sumo - simulation of urban mobility,” Interna-
tional Journal On Advances in Systems and Measurements, vol. 5, pp.
128–138, 2012.

[11] A. Alahi, V. Ramanathan, and L. Fei-Fei, “Socially-aware large-
scale crowd forecasting,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2014, pp. 2203–2210.

[12] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 961–971.

[13] A. Vemula, K. Muelling, and J. Oh, “Social attention: Modeling
attention in human crowds,” arXiv preprint arXiv:1710.04689, 2017.

[14] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social
gan: Socially acceptable trajectories with generative adversarial
networks,” in CVPR’18, 2018, pp. 2255–2264.

[15] Y. Xu, Z. Piao, and S. Gao, “Encoding crowd interaction with deep
neural network for pedestrian trajectory prediction,” in CVPR’18,
2018, pp. 5275–5284.

[16] D. L. Gerlough, Simulation of Freeway Traffic on a General-purpose
Discrete Variable Computer. University of California, Los Angeles,
1955.

[17] G. F. Newell, “Nonlinear Effects in the Dynamics of Car Follow-
ing,” Operations Research, vol. 9, no. 2, pp. 209–229, 1961.

[18] K. Nagel and M. Schreckenberg, “A cellular automaton model for
freeway traffic,” Journal of Physics I, vol. 2, no. 2, pp. 2221–2229,
1992.

[19] M. Treiber and D. Helbing, “Microsimulations of freeway traffic
including control measures,” Automatisierungstechnik, no. 49, pp.
478–484, 2002.

[20] A. Kesting, M. Treiber, and D. Helbing, “General lane-changing
model mobil for car-following model,” Transportation Research
Record, vol. 1999, no. 1, pp. 86–94, 2007.

[21] T. Mao, H. Wang, Z. Deng, and Z. Wang, “An efficient lane model
for complex traffic simulation,” Computer Animation and Virtual
Worlds, vol. 26, no. 3-4, pp. 397–403, 2015.

[22] V. Shvetsov and D. Helbing, “Macroscopic dynamics of multilane
traffic,” Physical review E, vol. 59, no. 6, p. 6328, 1999.

[23] H. J. Payne, Models of Freeway Traffic and Control. Simulation
Councils, Incorporated, 1971.

[24] G. B. Whitham, Linear and Nonlinear Waves, ser. Pure and Applied
Mathematics: A Wiley Series of Texts, Monographs and Tracts.
Wiley, 2011.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

[25] L. Chong, M. M. Abbas, and A. Medina, “Simulation of Driver
Behavior with Agent-Based Back-Propagation Neural Network,”
Transportation Research Record: Journal of the Transportation Research
Board, vol. 2249, pp. 44–51, 2011.

[26] L. Chong, M. M. Abbas, A. Medina Flintsch, and B. Higgs, “A
rule-based neural network approach to model driver naturalistic
behavior in traffic,” Transportation Research Part C: Emerging Tech-
nologies, vol. 32, pp. 207–223, 2013.

[27] Q. Meng and J. Weng, “Classification and regression tree approach
for predicting drivers’ merging behavior in short-term work zone
merging areas,” Journal of Transportation Engineering, vol. 138, no. 8,
pp. 1062–1070, 2012.

[28] Y. Hou, P. Edara, and C. Sun, “Modeling mandatory lane changing
using bayes classifier and decision trees,” IEEE Transactions on
Intelligent Transportation Systems, vol. 15, no. 2, pp. 647–655, 2014.

[29] X. Lu, W. Chen, M. Xu, Z. Wang, Z. Deng, and Y. Ye, “AA-
FVDM: An accident-avoidance full velocity difference model for
animating realistic street-level traffic in rural scenes,” Computer
Animation and Virtual Worlds, vol. 25, no. 1, pp. 83–97, 2014.

[30] Q. Chao, Z. Deng, J. Ren, Q. Ye, and X. Jin, “Realistic data-driven
traffic flow animation using texture synthesis,” IEEE Transactions
on Visualization and Computer Graphics, vol. 24, no. 2, pp. 1167–1178,
Feb 2018.

[31] J. Sewall, J. V. D. Berg, M. C. Lin, and D. Manocha, “Virtualized
traffic: reconstructing traffic flows from discrete spatiotemporal
data.” IEEE transactions on visualization and computer graphics,
vol. 17, no. 1, pp. 26–37, 2011.

[32] Q. Chao, J. Shen, and X. Jin, “Video-based personalized traffic
learning,” Graphical Models, vol. 75, no. 6, pp. 305–317, 2013.

[33] D. Wilkie, J. Sewall, W. Li, and M. C. Lin, “Virtualized traffic at
metropolitan scales,” Front. Robot. AI, vol. 2, no. 11, 2015.

[34] W. Li, D. Wolinski, and M. C. Lin, “City-scale traffic animation
using statistical learning and metamodel-based optimization,”
ACM Trans. Graph., vol. 36, no. 6, pp. 200:1–200:12, Nov. 2017.

[35] H. Bi, T. Mao, Z. Wang, and Z. Deng, “A data-driven model for
lane-changing in traffic simulation,” in Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, ser.
SCA ’16, 2016, pp. 149–158.

[36] Q. Chao, Z. Deng, and X. Jin, “Vehicle–pedestrian interaction for
mixed traffic simulation,” Computer Animation and Virtual Worlds,
vol. 26, no. 3-4, pp. 405–412, 2015.

[37] W.-C. Lin, S.-K. Wong, C.-H. Li, and R. Tseng, “Generating believ-
able mixed-traffic animation,” Trans. Intell. Transport. Sys., vol. 17,
no. 11, pp. 3171–3183, Nov. 2016.

[38] T. Kwon, K. H. Lee, J. Lee, and S. Takahashi, “Group motion
editing,” ACM Trans. Graph., vol. 27, no. 3, pp. 80:1–80:8, Aug.
2008.

[39] M. Kim, K. Hyun, J. Kim, and J. Lee, “Synchronized multi-
character motion editing,” ACM Trans. Graph., vol. 28, no. 3, pp.
79:1–79:9, Jul. 2009.

[40] E. S. L. Ho, T. Komura, and C.-L. Tai, “Spatial relationship pre-
serving character motion adaptation,” ACM Trans. Graph., vol. 29,
no. 4, pp. 33:1–33:8, Jul. 2010.

[41] R. Kulpa, A.-H. Olivierxs, J. Ondřej, and J. Pettré, “Imperceptible
relaxation of collision avoidance constraints in virtual crowds,”
ACM Trans. Graph., vol. 30, no. 6, pp. 138:1–138:10, Dec. 2011.

[42] J. Kim, Y. Seol, T. Kwon, and J. Lee, “Interactive manipulation of
large-scale crowd animation,” ACM Trans. Graph., vol. 33, no. 4,
pp. 83:1–83:10, Jul. 2014.

[43] D. Wolinski, M. C. Lin, and J. Pettré, “Warpdriver: Context-aware
probabilistic motion prediction for crowd simulation,” ACM Trans.
Graph., vol. 35, no. 6, pp. 164:1–164:11, Nov. 2016.

[44] I. Karamouzas, N. Sohre, R. Narain, and S. J. Guy, “Implicit
crowds: Optimization integrator for robust crowd simulation,”
ACM Transactions on Graphics, vol. 36, no. 4, Jul. 2017.

[45] K. Kim, D. Lee, and I. Essa, “Gaussian process regression flow
for analysis of motion trajectories,” in ICCV’11. IEEE, 2011, pp.
1164–1171.

[46] J. Joseph, F. Doshi-Velez, A. S. Huang, and N. Roy, “A bayesian
nonparametric approach to modeling motion patterns,” Au-
tonomous Robots, vol. 31, no. 4, p. 383, 2011.

[47] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity
forecasting,” in European Conference on Computer Vision. Springer,
2012, pp. 201–214.

[48] D. Varshneya and G. Srinivasaraghavan, “Human trajectory pre-
diction using spatially aware deep attention models,” arXiv
preprint arXiv:1705.09436, 2017.

[49] F. Bartoli, G. Lisanti, L. Ballan, and A. Del Bimbo, “Context-aware
trajectory prediction,” arXiv preprint arXiv:1705.02503, 2017.

[50] T. Fernando, S. Denman, S. Sridharan, and C. Fookes, “Soft+
hardwired attention: An lstm framework for human trajec-
tory prediction and abnormal event detection,” arXiv preprint
arXiv:1702.05552, 2017.

[51] H. Nam and B. Han, “Learning multi-domain convolutional neu-
ral networks for visual tracking,” CoRR, vol. abs/1510.07945, 2015.

[52] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from
a single image using a multi-scale deep network,” in Advances in
neural information processing systems, 2014, pp. 2366–2374.

[53] Y. Kuznietsov, J. Stückler, and B. Leibe, “Semi-supervised deep
learning for monocular depth map prediction,” in CVPR’17, 2017,
pp. 6647–6655.

[54] L. He, G. Wang, and Z. Hu, “Learning depth from single images
with deep neural network embedding focal length,” IEEE Transac-
tions on Image Processing, 2018.

[55] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[56] B. Mahasseni, M. Lam, and S. Todorovic, “Unsupervised video
summarization with adversarial lstm networks,” in CVPR’17, July
2017, pp. 2982–2991.

[57] J. Walker, K. Marino, A. Gupta, and M. Hebert, “The pose
knows: Video forecasting by generating pose futures,” CoRR, vol.
abs/1705.00053, 2017.

[58] X. Ma and E. H. Hovy, “End-to-end sequence labeling via bi-
directional lstm-cnns-crf,” CoRR, vol. abs/1603.01354, 2016.

[59] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp.
1929–1958, Jan. 2014.

[60] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-
fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensor-
Flow: Large-scale machine learning on heterogeneous systems,”
https://www.tensorflow.org/, 2015.

[61] A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional lstm and other neural network architectures,”
Neural Networks, vol. 18, no. 5-6, pp. 602–610, 2005.

[62] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of machine learning research, vol. 9, no. Nov, pp. 2579–2605,
2008.

[63] E. Williams, “Experimental designs balanced for the estimation
of residual effects of treatments,” Australian Journal of Chemistry,
vol. 2, no. 2, pp. 149–168, 1949.

Huikun Bi received the BSc degree in Informa-
tion and Computing Science from Hebei Uni-
versity, China. She is working toward the PhD
degree in the in the Institute of Computing Techi-
nology, Chinese Academy of Sciences and Uni-
versity of Chinese Academy of Sciences. Her
main research interests include traffic simulation
and trajectory prediction in deep learning.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

Tianlu Mao received the PhD degree from
the Institute of Computing Techinology, Chinese
Academy of Sciences, in 2009, where she is
also working as associate professor. Her main
scientific interests include the areas of crowd
simulation and cloth animation.

Zhaoqi Wang is a researcher and a director
of PhD students at the Institute of Computing
Technology, Chinese Academy of Sciences. His
research interests include virtual reality and in-
telligent human computer interaction. He is a se-
nior member of the China Computer Federation.

Zhigang Deng received the BS degree in math-
ematics from Xiamen University, China, the MS
degree in computer science from Peking Uni-
versity, China, and the PhD degree in computer
science from the Department of Computer Sci-
ence, University of Southern California, in 2006.
He is a professor of computer science with the
University of Houston. His research interests in-
clude computer graphics, computer animation,
and HCI.

