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Figure 1: The generated traffic flows via various traffic simulation and animation approaches: (a) synthesized traffic flows on a highway
network from Chao et al. [CDR∗18], (b) a dense traffic scenario with signalized crossing from Shen and Jin [SJ12], (c) the reconstruction of
virtual traffic flows using in-road sensor data from Wilkie et al. [WSL13], (d) the reconstructed city-scale traffic using GPS data from Li et
al. [LWL17], and (e) a heterogeneous traffic simulation used for autonomous driving testing [CJH∗19].

Abstract
Virtualized traffic via various simulation models and real-world traffic data are promising approaches to reconstruct detailed
traffic flows. A variety of applications can benefit from the virtual traffic, including, but not limited to, video games, virtual
reality, traffic engineering, and autonomous driving. In this survey, we provide a comprehensive review on the state-of-the-art
techniques for traffic simulation and animation. We start with a discussion on three classes of traffic simulation models applied
at different levels of detail. Then, we introduce various data-driven animation techniques, including existing data collection
methods, and the validation and evaluation of simulated traffic flows. Next, We discuss how traffic simulations can benefit the
training and testing of autonomous vehicles. Finally, we discuss the current states of traffic simulation and animation and
suggest future research directions.
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1. Introduction

Visual traffic has attracted increasing attention from a variety of
research communities in recent years, including, but not limited
to computer games, urban visualization, urban planning, and au-
tonomous driving. Urban scenes are indispensable in virtual real-
ity, games, and animation, which inevitably involve a large number
of vehicles moving around. In order to control the motion of a sin-
gle vehicle, a simple solution is to use keyframe methods. How-
ever, simulating traffic congestion, frequent lane-changing, and
pedestrian-vehicle interactions in large-scale traffic scenarios using
keyframe methods not only requires complex design and repetitive
adjustments from an animator, but also the resulting vehicle move-
ments are rarely in accordance with physical laws. Therefore, ef-
fectively simulating large-scale traffic flows has become an increas-
ingly necessary topic in Computer Graphics. Additionally, incorpo-
rating real-time traffic flow into virtual road networks has become
critical due to the popularity of road network visualization tools,
such as OpenStreetMap, ESRI, and Google Maps. Nevertheless,
accessing actual trajectories of vehicles and incorporate them to
virtual applications in real time is difficult. These trends have moti-
vated research efforts on data-driven traffic simulation [WSLL15].

In addition to the above-mentioned applications in animation and
visualization, traffic simulation has a wide range of applications in
transportation research. Traffic simulation software packages, such
as VISSIM [PTV11], TSIS [TSI18], and PARAMICS [PAR18],
serve as effective tools for researchers to study the performance
of a traffic network. Virtual Reality-based driving training pro-
grams have helped new drivers to improve driving skills by produc-
ing realistic traffic environments [VRd18, LWX∗18]. Traffic sim-
ulation can also be used as an effective tool for generating var-
ious traffic conditions for training and testing autonomous vehi-
cles [SAMR18].

Furthermore, the increasing volume of vehicular traffic and com-
plex road networks have led to many traffic-related problems, such
as traffic jams, incident management, signal control, and network
design optimization. These problems are difficult to solve using tra-
ditional tools that are based on analytical models [SHVDWVW16].
Thus, many research efforts have been attempted on the model-
ing, simulation, and visualization of traffic using advanced com-
puting technologies—either to analyze traffic conditions for traffic
management [PBH12,WLY∗13,WYL∗14] or to assist traffic recon-
struction in urban development [GDGAVU14].

One major focus of traffic simulation is to answer the follow-
ing question: given a road network, a behavior model, and initial
vehicle states, how would the traffic evolve? There are massive
mathematical descriptions on the modeling and simulation of traf-
fic flows, which can be roughly classified into macroscopic mod-
els [SWML10], microscopic models [SJ12], and mesoscopic mod-
els [SWL11]. While macroscopic methods treat the collection of
vehicles as a continuous flow, microscopic methods model the dy-
namics of each vehicle under the influence of its surrounding vehi-
cles. Mesoscopic models, in contrast, combine the strengths of both
microscopic and macroscopic models to simulate traffic at different
levels of detail. In addition, the generation and representation of
road networks is also a fundamental problem in traffic simulation.

While the aforementioned traffic models are effective in cap-

turing high-level flow appearance, the resulting simulations, how-
ever, usually do not resemble real-world traffic at the street level.
With the development of advanced sensing hardware and computer
vision techniques, empirical traffic flow datasets in the forms of
video, LiDAR, and GPS sensors are becoming increasingly avail-
able. This phenomenon gives rise to data-driven traffic animation
techniques. Example works include the reconstruction of traffic
flows from spatio-temporal data acquired by existing in-road sen-
sors [SVDBLM11, WSL13, LWL17], the synthesis of new traffic
flows from limited trajectory samples [CDR∗18], and the gener-
ation of traffic flows through learning behavior patterns and in-
dividual characteristics from traffic monitoring datasets [CSJ13,
BMWD16].

In spite of significant advances achieved in traffic simulation and
animation, how to measure the realism of simulated traffic has been
largely under-explored to date. Moreover, In model-based traffic
simulation and data-driven animation approaches, model validation
in terms of the similarity between simulated and real-world traffic
is always a concern. In order to address these issues, current ap-
proaches include using subjective user evaluations and incorporat-
ing objective evaluation metrics into the measurement [CDX∗18].

Virtual traffic via various traffic simulation and animation tech-
niques has also been applied to the training of autonomous driving.
Autonomous driving has the potential to revolutionize our trans-
portation systems. However, recent failures in testing have em-
phasized the training of these automated machines in simulated
environments before deploying them to the real world [BNP∗18,
LWL19, LPZ∗19].

Currently, the performance of autonomous vehicles is typically
tested using a single interfering road user (e.g., vehicle, pedes-
trian, or bicycle) with predefined behaviors in a virtual environ-
ment [WEG∗00,DRC∗17,apo18]. Trained in simulated traffic flows
with rich interactions among various road users, an autonomous
vehicle can potentially gain the ability to handle intricate traffic
conditions in complex urban environments. In addition, traffic sim-
ulation and animation can also benefit from learning-based mo-
tion planning and decision-making algorithms developed for au-
tonomous vehicles. Specifically, with an increasing number of driv-
ing datasets collected, the resulting accurate traffic simulation can
enrich the motion planning and decision-making of autonomous
vehicles in terms of more accurate traffic semantics.

For safe autonomous driving, a high-fidelity driving simulator,
which incorporates realistic traffic flows and complex traffic con-
ditions, is necessary. Such a simulator can produce critical train-
ing environments in an efficient and reproducible manner. Because
traffic simulations are becoming essential in autonomous driving
research, in this survey, we will particularly describe the latest de-
velopments in autonomous driving from three aspects: data acqui-
sition, motion planning, and simulations for testing.

Organization. The remainder of this survey is organized as fol-
lows. Section 2 presents three classes of model-based traffic sim-
ulation methods, and provides different representative approaches
for the procedural modeling and geometric representation of road
networks. Section 3 surveys various data-driven animation tech-
niques based on different data acquisition methods. Section 4 in-
vestigates the validation of animation methods and evaluation of
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Figure 2: Schema of traffic simulation and animation components introduced in this survey. First, the components of traditional traffic
simulation and animation: road network generation (Sec. 2.4); traffic data acquisition (Sec. 3.1); model-based simulation (Sec. 2); data-
driven animation (Sec. 3.2), and validation & evaluation (Sec. 4). Second, the components of autonomous driving research: autonomous
driving training datasets (Sec. 5.1); motion planning and decision-making methods (Sec. 5.2), and simulation for autonomous driving (Sec.
5.3).

generated virtual traffic. Section 5 presents recent efforts on data
acquisition, motion planning, and the use of virtual traffic for au-
tonomous driving research. Finally, Section 6 and Section 7 con-
clude this survey with a discussion of the current states of existing
studies and our perspectives on future research directions.

2. Model-based Traffic Simulation

An essential component in traffic simulation is portraying the mo-
tions of vehicles at various levels of detail. Early research on the
modeling and simulation of traffic flows can be traced back to
1950s, when the prototypes of macroscopic and microscopic traffic
models were proposed respectively [Pip53, LW55]. After years of
development, there are three general types [VWKVLVH15,FSS18]
of traffic simulation techniques (illustrated in Fig. 3), namely,
macroscopic (Sec. 2.1), microscopic (Sec. 2.2), and mesoscopic
(Sec. 2.3).

Traffic flows can be treated as a type of crowd flows: vehicles
in a flow share similar goals and behavioral rules, interacting with
neighbors while maintaining individual driving characteristics. In
Computer Graphics, crowd simulation has been an important re-
search area, supporting the study of collective behaviors and dy-
namics [PAB08, ZCC∗10]. Crowd simulation can be achieved in
either a macroscopic manner (modeling a crowd as a whole at the
expense of realistic motions of individual agents) [NGCL09] or a
microscopic manner (modeling a crowd as a collection of move-
ments from individual agents) [WLP16].

2.1. Macroscopic Methods

Macroscopic methods, also called continuum methods, describe ve-
hicles’ behaviors and interactions at a low level of detail: a traffic
stream is represented by a continuum in terms of speed, flow, den-
sity, etc. Macroscopic methods are mainly designed for efficient

Model-based Simulation

Macroscopic MicroscopicMesoscopic

LWR,
ARZ

Cluster model,
Headway distribution,

Gas-kinetic

Cellular
Automata Model,
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Continuum
Traffic

Hybrid
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Detailed Vehicle
Behavior

Figure 3: Classification of model-based traffic simulation methods
based on the levels of detail which these models simulate. Here,
LWR and ARZ refer to two popular macroscopic traffic models
proposed by Lighthill-Whitham-Richards [LW55, Ric56] and Aw-
Rascle-Zhang [AR00, Zha02], respectively.

traffic simulation on a large-scale road network, focusing on repro-
ducing aggregated behaviors measured with collective quantities
such as flow density and traffic flux.

One of the early first-order macroscopic models was developed
by Lighthill and Whitham [LW55] and Richards [Ric56], referred
to as the LWR model. Their model assumes that the traffic flow
rate depends only on traffic density that describes the flow-density
relationship.
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Discretization
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Vehicle state update

Figure 4: Illustration of the macroscopic traffic simulation ap-
proach [SWML10]. Each lane is divided into discrete cells. At a
given time step, the states of each cell are updated by solving the
ARZ equations, which solutions are then used to update the states
of each vehicle in each lane.

The model builds a nonlinear scalar conservation law for model-
ing traffic flows, based on the similarities between one-dimensional
compressible gas dynamics and the evolving of traffic flows on a
single lane. Essentially, the LWR model describes the motion of
large-scale traffic flows with low-resolution details. One of its lim-
itations is that it can not model the movements of a vehicle under
non-equilibrium conditions, such as stop-and-go waves.

Later, a continuous second-order traffic flow model was pro-
posed by Payne [Pay71] and Whitham [Whi74], which is known as
the Payne-Whitham (PW) model. While the first-order model as-
sumes the existence of a fixed equilibrium state, the second-order
model introduces a second differential equation to describe traffic
velocity dynamics. As an limitation, the PW model can introduce
negative velocities and the information generated from vehicle dy-
namics can travel faster than vehicle velocity, meaning drivers can
be affected by their following vehicles. Aw and Rascle [AR00] and
Zhang [Zha02] proposed a modification to the PW model in order
to eliminate its nonphysical behaviors. To be specific, Aw and Ras-
cle [AR00] introduced a pressure term to guarantee that no infor-
mation travels faster than the speed of a car. Zhang [Zha02], sim-
ilarly, proposed a modification to the momentum equation of the
PW model to handle backward-propagating traffic. The resulting
model is referred to as the Aw-Rascle-Zhang (ARZ) model, which
has been thoroughly studied since [Ras02,GP06,LMHS07,MR07].
Mammar et al. [MLS09] showed that the ARZ model fits real-world
data better than the LWR model numerically.

In order to produce detailed 3D animation and visualization of
traffic flows, Sewall et al. [SWML10] presented a continuum traffic
simulation model to generate realistic traffic flows on large-scale
road networks. They adapt the single-lane ARZ model to handle
multi-lane traffic by introducing a novel model of lane-changing
and using a discrete representation for each vehicle. As illustrated
in Fig. 4, the flow of traffic is simulated by discretizing each lane
into multiple cells. In order to update the states of each cell, the
Finite Volume Method (FVM) for spatial discretization [LeV02],
combined with a Riemann solver, is used to solve the ARZ equa-
tions. In order to model lane-merging and lane-changing behaviors,
Sewall et al. combine continuum dynamics with discrete vehicle in-
formation by representing vehicles as “carticles”. These “carticles”
are driven by the underlying continuum flow.

In summary, macroscopic traffic models are efficient tools to

simulate large-scale traffic. However, such techniques are limited
to networks of highways, thus not suitable for simulating street-
level traffic which consists of rich interactions among individual
cars. Moreover, since these models do not model lane-merging be-
haviors of a vehicle, they cannot handle density transfer during the
lane-changing process.

2.2. Microscopic Methods

Microscopic models produce vehicle motions at a high level of de-
tail: each vehicle is treated as a discrete agent satisfying certain
governing rules. A number of microscopic models have been de-
veloped for specific urban traffic simulations, attributing to their
flexibility in modeling heterogeneous behaviors of agents, diverse
road topologies, and interactions among surrounding vehicles.

Early examples of microscopic models include the cellular au-
tomata model [NS92] and car-following models [Pip53, HG63].
The motions of the vehicles in the cellular automata model are de-
scribed by evolution rules in pre-specified time, space, and state
variables. To be specific, a road is discretized into cells, and the
model determines when a vehicle will move from the current cell
to the next cell. Owing to its simplicity, the cellular automata model
is computationally efficient and can simulate a large group of vehi-
cles on a large road network [KSSS04]. However, due to its discrete
nature, the generated virtual traffic can only reproduce a limited
number of real-world traffic behaviors.

In contrast, car-following models, first introduced by
Pipes [Pip53] and Reuschel [Reu50], can generate realistic
driving behaviors and detailed vehicle characteristics at the cost
of computation. They assume that the traffic flow consists of
scattered particles [SZ14] and model detailed interactions among
cars. These models represent the position and speed of each
car through continuous-time differential equations based on the
stimulus-response framework: Response = Sensitivity× Stimulus,
in which the stimulus is associated with the position and velocity
of the leading vehicle.

Over the past decades, numerous variations and extensions of
the car-following model have been developed by modeling the re-
sponses of a subject vehicle to its front vehicle. Two well-known
examples are the optimal velocity model (OVM) [BHN∗95] and
the intelligent driving model (IDM) [TH02]. In the OVM model,
the subject vehicle is assumed to maintain its optimal velocity. Its
acceleration is determined by the difference between its velocity
and the optimal velocity of the front vehicle. In the IDM model, the
vehicle’s acceleration or deceleration is computed according to its
current speed and relative speed and position to its front vehicle.
The vehicle-specific parameters enable the IDM model to simulate
various vehicle types and driving styles.

Besides simulating traffic flows on a single lane, multi-lane sim-
ulations have also been studied [SN03, Dav04, THG05, HNT07].
One example is the modified optimal velocity model [Dav04],
which is used to simulate traffic on a dual-lane highway and a
single-lane highway with an on-ramp; another example is the two-
lane traffic model [THG05], which is used to simulate traffic lateral
effects.

In order to generate detailed traffic simulations, Shen and
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Figure 5: Situations where a vehicle must change its lane [SJ12]:
(a) reaching the end of the current lane, (b) an accident vehicle ap-
pears in front in the current lane, and (c) a guidance sign appears
at the road crossing.

Jin [SJ12] proposed an enhanced IDM together with a continuous
lane-changing technique. Their technique can produce traffic flows
with smooth acceleration/deceleration strategies and flexible lane-
changing behaviors. The model modifies the original IDM model to
make it more suitable for signalized urban road networks. Specifi-
cally, the acceleration process is separated into a free-road accelera-
tion term describing the driver’s intention to reach its desired veloc-
ity, and a deceleration term describing the driver’s intention to keep
safe distances to its nearby vehicles. The deceleration term is mod-
ified by adding an activation governing control part for generating
smoother reactions to stopped vehicles. Also, the model divides the
lane-changing behaviors on urban roads into two situations: free
lane changing and imperative lane changing, and provides a flexi-
ble continuous model for both situations.

Free lane changing frequently occurs in a comparatively free
road condition. This behavior is modeled by the double-lane MO-
BIL model from Kesting et al. [KTH07]. Imperative lane chang-
ing is applied when the subject vehicle demands a lane-changing
action because of some imperative factors, such as reaching the
end of lane or turning at the crossing, while the gap between the
subject vehicle and its leading vehicle may be insufficient for free
lane changing (Fig. 5). Lu et al. [LCX∗14] extended the full veloc-
ity difference model (FVDM) [JWZ01] to handle close-car-braking
circumstances in rural traffic simulations. Later, Lu et al. also intro-
duced a personality model into traffic simulation [LWX∗14].

Compared to simulating traffic on lanes (either signle or multi-
ple), simulating traffic at intersections is more difficult. Doniec et
al. [DMPE08] proposed a multi-agent behavioral model for traffic
simulation by treating intersectional traffic as a multi-agent coor-

Figure 6: Illustration of a hybrid traffic simulation
method [SWL11]. The traffic within the yellow bounding box
is simulated using an agent-based technique, while the rest traffic
is simulated using a continuum technique.

dination task. To be specific, first, each vehicle perceives the sur-
rounding traffic and makes a decision; second, an anticipation al-
gorithm is introduced to generate the anticipation abilities for the
simulated vehicles. Wang et al. [WXZ∗18] introduced the concept
of shadow traffic for modeling traffic anomalies in a unified way
in traffic simulations. Chao et al. [CDJ15] designed a rule-based
process to model vehicle-pedestrian interactions in mixed traffic
simulations.

In summary, as microscopic traffic models aim to describe spe-
cific vehicle behaviors, they can be used to simulate traffic in
both continues lanes and intersections. The bottleneck is usually
the computational cost, especially when a large-scale simulation is
needed.

2.2.1. A Hybrid Method

While continuum methods (i.e., macroscopic models) excel the
large-scale traffic simulation and agent-based techniques (i.e., mi-
croscopic models) excel the modeling of individual vehicles, Se-
wall et al. [SWL11] combined these two types of approaches and
proposed a hybrid method. Their approach simulates traffic in the
areas of interest using an agent-based model, while the rest areas
using a continuum model (see Fig. 6). By dynamically and auto-
matically switching between the two modeling methods, their ap-
proach can simulate traffic under different levels of detail based on
user preference.

2.3. Mesoscopic Methods

Mesoscopic models are an intermediate approach between macro-
scopic and microscopic approaches. The core idea of the meso-
scopic models is to describe traffic flow dynamics in an aggregate
manner while representing the behaviors of individual drivers using
probability distribution functions [HB01c]. Mesoscopic models can
be divided into three classes: cluster models, headway distribution
models, and gas-kinetic models [FSS18]. The cluster models repre-
sent the dynamics of traffic flows by describing groups of vehicles
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with the same properties [KMLK02,MKL05]. The headway distri-
bution models focus on the statistical properties of time headways.
Among mesoscopic approaches, the most known models are gas-
kinetic models, in which an analogy between the gas dynamics and
the traffic dynamics is drawn. [PA60, THH99, HHST01, HB01a].

In transportation engineering, gas-kinetic models are usually
not applied in simulations but maintain their roles in deriving
other continuum models [Hel01]. For example, Hoogendoorn and
Bovy [HB00, HB01b] derived a multi-class multi-lane continuum
traffic flow model based on gas-kinetic models. Gas-kinetic models
are also basis for many macroscopic models, for example adaptive
cruise control policies [DNP15]. The kinetic theory is also used to
derive a mathematical model of vehicular traffic [FT13], in which
the assumption on the continuously distributed spatial positions and
speed of the vehicles is relaxed. In Computer Graphics, mesoscopic
models are rarely utilized in traffic simulations due to a large num-
ber of unknown parameters and complex differential or integral
terms, which restrict the simulation and animation efficiency.

2.4. Road Network Generation

Traffic simulation is a form of interplay between the vehicles and
the road network. The acquisition and modeling of the underly-
ing road network is an important yet challenging aspect. Digital
representations of real-world road networks have been increasingly
available, but these data are often not directly usable for simulat-
ing traffic. Traffic simulations, based on macroscopic and micro-
scopic modeling methods, take place on a road network formed
with lanes. A road network contains many features such as lanes,
intersections, merging zones, and ramps. Many methods have been
proposed for the procedural modeling and geometric representation
of a road network.

Parish et al. [PM06] proposed a system
called CityEngine [cit18], using a procedural approach based
on L-system to generate a road network (Fig. 7(a)). Taking map
images as the input, the system can generate a set of highways
and streets, divide a land into lots, and build appropriate ge-
ometry for buildings on the respective allotments. Later, many
researchers improved road network generation models based
on CityEngine [CEW∗08, BN08, GPMG10]. For example, Sun et
al. [SYBG02] presented a template-based road network generation
model. Endowed with more flexibility, users can edit a road net-
work directly using the automatic road network generation model
from Chen et al. [CEW∗08]. Recently, Nishida et al. [NGDA16]
presented an interactive road design system using the patches
and statistical information extracted from example road networks.
Hartmann et al. [HWWK17] proposed an example-based approach
for synthesizing a road network using Generative Adversarial
Networks (GAN). They use a binary image to represent a road
network patch. Since these approaches are designed for building
virtual scenes, they often fail to provide the necessary informa-
tion for traffic simulation, such as lane-to-lane connections and
adjacencies.

Several road modeling techniques were proposed for traffic sim-
ulation. Yang and Koutsopoulos [YK96] use node, link, segment,
and lane to describe the semantics of a road network. Their model

(a) (b)

Figure 7: A road network created using (a) CityEngine [cit18] and
(b) the technique from Wilkie et al. [WSL12].

has been incorporated into the traffic simulation software MIT-
SIM [BAKY02]. In this model, a segment denotes a set of lanes
with the same geometric polylines, and a link denotes a collection
of segments. Vector data are stored in the segment’s data structure.
The stored information includes the starting/ending points and the
curvature of a segment arc. A node is used to describe an intersec-
tion. Here, the node must be supplied to the model as input data
and only used to describe whether the links are connected. The
conflict relationship between links in each direction at an inter-
section is not considered. In VISSIM [PTV11], traffic simulation
software, link and connector are adopted to describe the topology
of a road network, which helps the presentation of roads with more
complex geometries. However, the road network in VISSIM only
consists of consecutive segments, so it is difficult to handle the con-
flicts among different directions at an intersection. Similarly, other
road network representation models [Par03, BC05, SWL11, SJ12]
have been made available. Recently, Cura et al. [CPP18] use real
Geographic Information System (GIS) data to produce a coher-
ent street-network model, containing topological traffic informa-
tion, road surface, and street objects. The system can provide lanes
and lane inter-connections as basic geometric information needed
for traffic simulation. However, they use lane as an atomic unit to
define and organize a road network, while ignoring the vector data
of a road network. Worth mentioning, in order to facilitate the data
exchange among different driving simulators, an open data format
named OpenDRIVE [DG06] was proposed to standardize the logi-
cal road description.

Aiming at improving the visualization of vehicle motions,
Wilkie et al. [WSL12] proposed a novel road network model
(Fig. 7(b)) to automatically transform low-detailed GIS data into
high-detailed functional road networks for simulation. The lane-
centric topological structure and the arc road representation can
be generated using this model. This model defines an intersec-
tion on the basis of a lane. An intersection is managed in a sim-
ulation via traffic signals and pre-determined moving priorities.
The resulting Road Network Library [WSLL15] can be found
at http://gamma.cs.unc.edu/RoadLib/. The model has
motivated more lane-based simulation techniques, for example
Mao et al. [MWDW15] model lanes based on the road axis under
the Frenet frame to facilitate complex traffic simulations.

Worth meaning, depends on applications, traffic simulation at
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different levels of detail require different information regarding the
underlying road network. In general, macroscopic traffic simula-
tion requires less details of a road network—mainly the geomet-
rical information is needed so that the propagation of density and
speed of a traffic flow can be modeled. Microscopic traffic simula-
tion, in contrast, as it outputs detailed motion of individual vehicles,
usually requires more information regarding a road network. Such
information include lane (instead of road) separation and joining,
traffic signal logic, moving priorities at intersections and ramps,
etc.

3. Data-Driven Traffic Simulation

In this section, we explore the acquisition of real-world traffic data
(Sec. 3.1) and various data-driven approaches for traffic reconstruc-
tion and synthesis (Sec. 3.2).

3.1. Traffic Data Acquisition

Traffic sensors come in several forms [LBH∗10,Led08]. To list few
examples, one fixed sensor is inductive-loop detector, which is usu-
ally placed on highways and major roads to record the attributes
of every vehicle that passes. Another fixed sensor is video cam-
era, which is also used for monitoring traffic. In addition to fixed
sensors, mobile sensors are also ubiquitous: cell phones and GPS
devices are used to record the speed of a vehicle along with its po-
sition.

The inductive-loop detector has become the most utilized sensor
since its introduction in the early 1960s [AKH∗12, KMGK06]. It
can detect vehicles’ passing or arriving at a certain point, for in-
stance, approaching a traffic light or in motorway traffic. An insu-
lated, electrically conducting loop is installed in the pavement. Ve-
hicles passing over or stopped within the detection area decreases
the inductance of the loop. Then, the electronic unit senses this
event as a decrease in frequency and sends a pulse to the controller
to signify the passage or presence of a vehicle. This in-road sensor
can usually track the passing time, the lane id, and the velocity of a
vehicle.

Video camera, as an over-roadway sensor, has also been widely
deployed. An example is the Next Generation Simulation (NGSIM)
program [NGS18], in which the cameras are installed along the
road capturing traffic data at 10 frames per second. The resulting
dataset encloses detailed vehicle trajectories. Table 1 lists four pop-
ular NGSIM datasets in terms of road length, road types, record
time, and the number of vehicles. Fig. 8 shows an example of data
collection on U.S. 101 Highway: eight synchronized video cam-
eras, mounted from the top of a 36-story building adjacent to the
freeway, recording vehicles passing through the study area. In or-
der to process the large amount of data being captured, NGSIM-
VIDEO [NGS18] is developed to automatically extract vehicle tra-
jectories from images.

While traditional traffic data collection methods through in-
road sensors are costly in general, mobile data such as GPS re-
ports have becoming increasingly available and have been used
in estimating citywide traffic conditions [AA06, LNWL17]. Taxi-
cabs and shared ride services (e.g., Uber and Lyft) systematically

Figure 8: Eight cameras installed over U.S. Highway 101. The
photo on the right shows a video camera mounted on the top of
a building overlooking the highway.

Table 1: Four selected NGSIM Datasets [NGS18]

Location
Road Length

(feet)
Road Type Record Time # of Vehicles

I-80,
Emeryville,
California

1650
Freeway,

one on-ramp
4:00 pm–5:30 pm 3200+

US 101,
Los Angeles,

California
2100

Freeway,
one on-ramp
& off-ramp

7:50 am–8:35 am 3000+

Lankershim
Blvd,

Universal City,
California

1600
Arterial,

four intersections
8:30 am–9:00 am 1500+

Peachtree
Street,

Atlanta,
Georgia

2100
Arterial,

five intersections
12:45 pm–1:00 pm
4:00 pm–4:15 pm

1500+

equip their car fleets with these devices. Attributes such as lo-
cations, speed, and directions of a car are sent to a central pro-
cessing center. After processing, useful information (e.g., status of
traffic, and alternative routes) will be broadcast to drivers on the
road [TEBH98]. The current public available GPS datasets include
Mobile Century [HWH∗10], T-Drive [tdr10], GeoLife [geo09], and
Uber Movement [ube17]. Although promising, besides the inher-
ent noise, GPS data usually contain a low sampling rate, meaning
the time difference between two consecutive points can be large
(e.g., greater than 60 seconds), and exhibit spatial-temporal spar-
sity, meaning the data can be scarce in certain time periods and ar-
eas. So, in order to use GPS data in reconstructing traffic dynamics,
several processing steps are required [LNWL17, LJCL18].

Besides single-vehicle data, many efforts have been invested in
collecting traffic data from connected vehicles [HL08,RMR14]. As
an example, the Safety Pilot Model Deployment (SPMD) program
was launched at Ann Arbor, Michigan, United States in 2012. Ap-
proximately 3000 vehicles were equipped with GPS antennas and
DSRC (Dedicated ShortRange Communications) devices. Each ve-
hicle was broadcasting Basic Safety Messages including its po-
sition and velocity to nearby vehicles and roadside units. These
connected-vehicle data provide opportunities to improve intelligent
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Figure 9: Illustration of traffic reconstruction from temporal-
spatial data acquired from in-road sensors. For the vehicle i, the
sensors provide a vector (tA
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i are respectively the passing time, the lane id,

and the velocity of vehicle i when passing point A (similarly for
point B and point C).

transportation system applications as well as detailed multi-lane
traffic simulation and animation. Because this type of data can be
sampled at a high frequency (e.g., 10 Hz [BS15]), which can re-
sult in considerable cost of storage and communication systems,
they are usually processed via a down-sampling but information-
preserving technique [MOH∗14, LLP19].

3.2. Traffic Reconstruction and Synthesis

Creating a digital representation of traffic that corresponds to real
world conditions is referred to as “virtualized traffic” and was first
introduced by Van Den Berg et al. [?]. In their work, a contin-
uous traffic flow is reconstructed and visualized from the spatio-
temporal data provided by traffic sensors. As shown in Fig. 9, the
sensors (points A, B, and C) are placed on the road at intervals of
200–400 meters. For a specific vehicle i, the sensor A provides a
tuple (tA

i , l
A
i ,v

A
i , t

B
i , l

B
i ,v

B
i , t

C
i , l

C
i ,v

C
i ) as data input, where tA

i , l
A
i ,v

A
i

are respectively the passing time, the lane id, and the velocity of
the vehicle i (similarly for the points B and C). The task is to com-
pute trajectories (the blue curve in Fig. 9) for the vehicle i on the
road starting and arriving in the given lanes, at the given times,
and with the given velocities. The approach first discretizes pos-
sible state-time space and constrains the motion of a vehicle to a
pre-computed roadmap. Then, it searches for an optimal trajectory
for each vehicle in the roadmap that minimizes the number of lane-
changing and the amount of acceleration/deceleration, and maxi-
mizes the distance to other vehicles to obtain smooth and realistic
motions. For multiple vehicles, a priority based multi-robot path
planning algorithm [VDBO07] is utilized to compute the trajec-
tories of vehicles. However, the priority-based, multi-agent route
planning algorithm is time consuming, which makes this approach
quickly become intractable as the resolution of discretization in the
search space increases.

With the same goal of reconstructing traffic flow from in-road
sensor measurements, Wilkie et al. [WSL13] introduced a real-time
technique by integrating macroscopic state estimation from sparse
sensor measurements with an agent-based traffic simulation system
to reconstruct realistic motions of individual vehicles. As illustrated

Figure 10: Pipeline of a traffic flow reconstruction algo-
rithm [WSL13]. The algorithm integrates an efficient state estima-
tion method using Ensemble Kalman Filter and continuum traffic
simulation to efficiently reconstruct traffic. The results are visual-
ized using agent-based traffic simulation to produce realistic mo-
tion for individual vehicles.

in Fig. 10, this method features a traffic state estimation phase, in
which an ensemble of Kalman smoothers (EnKS) [Eve03] and a
continuum traffic simulator are used to create an estimate of veloc-
ity and density fields over the entire road network. The state esti-
mate is then used to drive an agent-based traffic simulation model
to produce the detailed motions of individual vehicles. Finally, the
output is a 2D traffic flow consistent with the original traffic signals
measured by the sensors. Compared to the traffic reconstruction
work by Sewall et al. [SVDBLM11], this method shows a higher
flexibility and a lower computational cost. However, this estima-
tion method is fundamentally macroscopic except the matching of
individual vehicles.

Recently, Li et al. [LWL17] proposed a method to reconstruct
city-scale traffic from GPS data. To address the issue of insufficient
data coverage, this method takes a GIS map and GPS data as input,
and reconstructs city-scale traffic using a two-phase process. At
the first phase of initial traffic reconstruction, the flow conditions
on individual road segments are reconstructed and progressively
refined from the sparse GPS data using statistical learning com-
bined with optimization, map-matching, and travel-time estima-
tion techniques. At the second phase of dynamic data completion,
a metamodel-based simulation optimization is introduced to effi-
ciently refine the reconstructed results from the first phase, along
with a microscopic simulator to dynamically interpolate missing
data in the areas of insufficient data coverage. To ensure that the re-
constructed traffic is correct, the method further fine-tunes the sim-
ulation with respect to city-wide boundary (traffic) constraints and
the reconstructed traffic flow from the first phase. This is achieved
through the error approximation of the traffic flow computed by the
metamodel-based formulation.

While the abovementioned traffic reconstruction techniques are
dedicated to predict complete traffic flows with sparse input data
in the same scenario, there are other data-driven traffic synthesis
methods aiming to generate new traffic flows from limited traffic
trajectory samples. Chao et al. [CDR∗18] synthesize new vehicle
trajectories through a fusion of texture synthesis and traffic behav-
ior rules, using a limited set of vehicle trajectories as input samples.
The example (input) vehicle trajectory set contains a variety of traf-
fic flow segments in terms of the number of lanes and flow density.
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Figure 11: Texture analogy of a set of two-lanes vehicle trajecto-
ries [CDR∗18]. The spatial-temporal information of the trajectory
set can be conceptually viewed as a 2D texture, and each traffic
texel encodes a vehicle’s states at a certain frame, including its
movement information and position relationship with its neighbor-
ing vehicles.

Randomized Forest

Lane-changing decision-making

BPNN

Lane-changing execution

Figure 12: Illustration of the pipeline of the data-driven lane-
changing model [BMWD16]. The preprocessing step extracts the
most relevant features from the pre-collected traffic dataset. Then,
the decision-making module infers whether the subject vehicle
should perform lane-changing as well as which target lane/gap
it should change to. Finally, the execution module computes the
detailed trajectories of involved vehicles to accomplish a lane-
changing task.

As illustrated in Fig. 11, by taking the spatial-temporal informa-
tion of traffic flows as a 2D texture, the generation of new traffic
flow can be formulated as a texture synthesis process, which is ef-
fectively solved by minimizing a newly developed traffic texture
energy metric. To be specific, each texel in traffic texture encodes
a vehicle’s state at a certain frame, including its velocity, position,
and dynamic relationships with its neighboring vehicles. The traffic
texture energy metric measures the similarity between the synthe-
sized traffic flows and given traffic flow samples. Each vehicle’s
velocity in the synthesized traffic flow is determined by finding the
best matched texel in the input traffic flow samples. The synthe-
sized output not only captures the spatial-temporal dynamics of the

A

B
C

Video Data Grid Map

Vx Vy Np Φ χ

Figure 13: Illustration of the environment matrices in intersec-
tional traffic simulation [BMWD19]. For vehicle A, a window with
size 31×31 is use to describe the surrounding area. An environment
matrix including five channels (Vx,Vy,Np,Φ,χ). Vx (or Vy) visual-
izes the velocities of vehicle B and C. Np denotes the number of
pedestrians and cyclists. Φ and χ represent the area into which ve-
hicle A can drive and the visible area from the drone’s perspective,
respectively.

input traffic flows, but also ensures traffic features such as the safe
distance between vehicles and lane-changing rules.

Instead of reconstructing virtual traffic based on data acquired
from in-road sensors or synthesizing new traffic flows from existing
trajectory data, researchers have also employed machine learning
algorithms to learn the detailed motion characteristics of vehicles,
including acceleration/deceleration in longitudinal direction, and
lane-changing process. Chao et al. [CSJ13] presented a video-based
approach to learn the specific driving characteristics of drivers from
videos for traffic animation. This approach formulates the estima-
tion of each vehicle’s unique driving habit as a problem of finding
the optimal parameter set of a microscopic driving model, which
can be solved using an adaptive genetic algorithm. The learned
characteristics can be used to reproduce the traffic flow in a given
video with a high accuracy and can also be applied for any agent-
based traffic simulation systems. Bi et al. [BMWD16] learn the
lane-changing characteristics from vehicle trajectory data. As il-
lustrated in Fig. 12, this approach first extracts the features that are
most relevant to a lane-changing task from a pre-collected vehicle
trajectory dataset. The extracted features are then utilized to model
the lane-changing decision making process and estimate the lane-
changing execution process.

The abovementioned works were focused on simulating ve-
hicles on freeways or large urban networks. Recently, Bi et
al. [BMWD19] proposed a deep learning-based framework for traf-
fic simulation at intersections. In order to describe the visual per-
ception of vehicle-environment interactions, a grid coordinate sys-
tem called grid map, is built to encode interactions among hetero-
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Figure 14: Snapshots of the driver’s view study (a) and the ex-
periment outcomes (b) [CDR∗18]. Black boxes at the left side and
white boxes at the right side indicate the total number of times when
the participants voted the results using the corresponding method.
Gray boxes in the middle indicate “undecided choices” (i.e., per-
ceptually equivalent). The symbol ∗ indicates the computed statisti-
cal significance according to a two-tailed independent one-sample
t-test with p < 0.05.

geneous vehicles mixed with pedestrians. As shown in Fig. 13, a
window with five channels sliding on the grid map can generate
an environment matrix for each vehicle. The environment matri-
ces capture the velocities and positions of vehicles and pedestrians
around a vehicle. Besides environment matrices, vehicle identities
based on a collected intersectional traffic dataset are adopted to de-
scribe the current vehicle states. Then, convolution neural networks
and recurrent neural networks are employed to learn the patterns
of vehicle trajectories at intersections. Besides simulating intersec-
tional traffic, it can also be used to alter existing intersectional traf-
fic animation by providing vehicles new destinations and driving
environments.

4. Validation and Evaluation

Broadly speaking, two types of virtual traffic evaluations could
be performed: visual and statistical [TK04]. In the visual vali-
dation, graphical representations of the real-world traffic and the
simulated traffic are displayed side by side to determine whether
or not they can be differentiated [SVDBLM11, CSJ13]. In the
work of Chao et al. [CDR∗18], researchers conducted user stud-
ies [KS40] using pairwise comparison on the generated traffic flows
with three different methods: (1) the ground-truth (i.e., the NGSIM
traffic flow data), (2) the proposed texture-based traffic synthe-
sis method [CDR∗18], and (3) one of the latest developments of

Figure 15: Comparison between agent-based (micro) simulation,
continuum (macro) simulation, our hybrid simulation technique,
and real-world NGSIM data on highway 101. These graphs show
density, velocity, and flux recorded over 15-second intervals cen-
tered around the times shown at a sensor near the end of the high-
way (620 m from the start) [SWL11].

the IDM model [SJ12]. For each test scene, three different traf-
fic flow animations are generated using the above three differ-
ent approaches respectively. As shown in Fig. 14(a), participants
are asked to select the a more realistic one in a pair of two an-
imation clips. In addition, the participants are allowed to select
the “Undecided” option, if they cannot determine which clip is
more visually appealing. To counter-balance the order of the vi-
sual stimuli, the pairs are displayed according to the Williams de-
sign latin square [Wil49]. The experiment outcomes of this user
study are shown in Fig. 14(b). In addition to the counted votes, the
researchers also performed the one-sample t-test and the paired-
sample t-test, and computed the corresponding p-value to quantify
the statistical significance of the voting outcomes.

As subjective user studies are unavoidably time-consuming and
error-prone, statistical validation through quantitative and objec-
tive measures can be used not only for measuring the realism of
various simulated traffic flows but also for objectively comparing
the performance of different traffic simulation models in a consis-
tent manner. For traffic simulation and animation techniques, di-
rect trajectory comparisons are usually not performed due to the
stochastic nature of traffic. Instead, comparisons of the averaged
velocities and traffic volumes over time are common (e.g., Fig. 15
from Sewall et al. [SWL11]). At a more detailed level, specific mo-
tion parameters, including velocity, acceleration, and vehicle gap,
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(a) Data from real world (d) Fidelity score: 8.99(c) Fidelity score: 5.41(b) Fidelity score: 0.73

Figure 16: Fidelity measure comparisons among three virtual traffic flows generated by the IDM model [SJ12] using three different parameter
sets ((b)-(d)). The initial traffic states of the simulator were set to the same values as the real-world traffic flow (a). Differences between the
simulated traffic and real-world ground truth are highlighted using white circles. For the dictionary-based fidelity evaluation, a smaller value
of the metric indicates a higher fidelity of virtual traffic [CDX∗18].
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Figure 17: The pipeline of the dictionary-based fidelity measure for
virtual traffic [CDX∗18]. The blue boxes show the to-be-evaluated
input of the system, which contains real world traffic dataset and
simulation data.

have also been used to validate the effectiveness of traffic simula-
tion techniques [CSJ13, BMWD16].

Recently, Chao et al. [CDX∗18] introduced a general,
dictionary-based learning method to quantitatively and objectively
measure the fidelity of traffic trajectory data. First, a traffic-pattern
dictionary that characterizes common patterns of real-world traf-
fic behavior is built offline from pre-collected ground-truth traffic
data. The intermediate learning error is set to the benchmark of
the dictionary-based traffic representation. With the aid of the con-
structed dictionary, the realism of input (simulated) traffic flows
can be evaluated by comparing its dictionary-based reconstruction
error with the benchmark dictionary error. As shown in Fig. 17,
this method consists of four stages: (1) the extraction of spatial-
temporal traffic flow features, (2) dictionary learning (i.e., construc-
tion of the traffic pattern dictionary) from real-world traffic data, (3)
dictionary based reconstruction of any input traffic flow data, and
(4) the computation of a quantitative measure based on the recon-
struction error. This evaluation metric can be robustly applied to
any simulated traffic flows. Fig. 16 shows the evaluation results of
several different traffic data. The range of fidelity scores is set to

[0..10]. If the simulated traffic is closer to the real-world (training)
traffic dataset, the fidelity score will have a smaller value, and vice
versa.

5. Applications in Autonomous Driving

Autonomous vehicles have the potential to release people from
driving a vehicle thus improving their productivity during a trip,
increase the safety and efficiency of current transportation sys-
tems, and transform transportation into a utility available to any-
one, anytime. In this section, we will describe the recent develop-
ments in autonomous driving, including training data collection for
autonomous driving (Sec. 5.1), deep-learning based motion plan-
ning methods(Sec. 5.2), and simulations for autonomous driving
(Sec. 5.3).

5.1. Autonomous Driving Datasets

The traffic datasets mentioned in Sec. 3.1 are collected for traf-
fic flow reconstruction and virtual traffic animation. Those datasets
may not be useful for building an autonomous driving system.
Knowing that training data are essential for autonomous driving,
we survey existing driving datasets (described below), in the forms
of first-view video, LiDAR data, and GPS information under dif-
ferent traffic conditions. These datasets have facilitated the devel-
opment of autonomous driving systems and the learning of various
driving behaviors.

Jain et al. [JKR∗15] collected a diverse data set with 1180 miles
natural freeway and city driving behaviors from 10 drivers. Video
clips from both inside and outside the car, GPS reports, and speed
measurements were recorded.

The comma.ai [SH16] dataset is a public dataset, which contains
around 7.25 hours’ highway driving data. The dataset has been di-
vided into 11 video clips. The released video has a resolution at
160 × 320. The speed, steering angles, GPS reports, gyroscope,
and IMU from several sensors were also recorded.

The Berkeley DeepDrive Video dataset (BDDV) [GKB∗16] con-
sists of real driving video and GPS/IMU data. A variety of driving
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scenarios, such as cities, highways, towns, and rural areas in sev-
eral US major cities, were recorded. The BDDV contains over 10k
hours dashboard-camera video streams.

The LiDAR-Video dataset (LiVi-Set) [CWL∗18] includes large-
scale high quality point clouds from a Velodyne laser scanner and
images from a dashboard camera. The Velodyne laser scanner col-
lects point clouds in 360 degrees horizontal view and from -30.67
to +10.67 degrees vertical view. The total amount of point clouds
data is around 1TB. The density is about 700,000 points per sec-
ond. About 15G video clips were recorded via a dashboard camera.
A recording software toolkit was remotely connected to the vehi-
cle controller in order to obtain the velocity from on-board sen-
sors. This dataset covers various traffic conditions including arte-
rial roads, primary roads, mountain roads, school zones, and special
tourist routes.

The Honda Research Institute Driving Dataset
(HDD) [RCMS18] includes 104 hours of driving data in San
Francisco Bay Area. A diverse set of traffic scenes is included. The
total size of the post-processed dataset is around 150GB and 104
video hours.

Drive360 [HDVG18] includes 60 hours of driving video from
eight surround-view cameras. Low-level driving maneuvers (e.g.,
steering angles and speed control) were recorded via the vehicle’s
CAN bus. The data have a high temporal resolution, 360 degrees
view coverage, frame-wise synchronization, and diverse road con-
ditions.

Some other datasets without driving behaviors can also con-
tribute to visual semantic understanding and vision-based control
in autonomous driving. The KITTI dataset [GLSU13, GLU12] is
recorded using Foru high resolution video cameras, a Velodyne
laser scanner, and a localization system. This dataset consists of
289 stereo and optical flow image pairs, stereo visual odometry se-
quences of 39.2 km length, and more than 200k 3D object anno-
tations captured in cluttered environments. This dataset is intended
for the tasks of stereo, optical flow, visual odometry/SLAM (Simul-
taneous Localization And Mapping), and 3D object detection.

The Cityscape dataset [COR∗16] consists of a large, diverse set
of stereo video sequences recorded on the streets of 50 cities. 5000
of these images have high quality pixel-level annotations; 20,000
additional images have coarse annotations. The dataset captures di-
verse street scenes in different seasons.

The Oxford RobotCar dataset [MPLN17] includes over 1000km
driving data with almost 20 million images collected from 6 cam-
eras, along with LIDAR and GPS data, from a variety of weather
conditions, including heavy rain, nigh, direct sunlight, and snow.
Since the recording time of this dataset spans a year, some roads
and buildings are subject to change. Another dataset from Udac-
ity [Uda] includes low-level driving maneuvers via the CAN bus.

Vision-based semantic segmentation of an urban environment is
essential for autonomous driving. Various datasets have been pro-
posed [RSM∗16,TKWU17,WU18] including a wide variety of syn-
thetic driving or street scenes of semantic segmentation, contribut-
ing to semantic understanding and vision-based control. A detailed
comparison of different autonomous driving datasets is shown in
Table 2.

It is worth noting that an autonomous driving dataset can also
contribute to traffic simulation and animation. To be specific, first,
vehicle trajectories can be used to calibrate traffic simulation mod-
els; second, large-scale traffic datasets can enrich data-driven traffic
synthesis methods; third, the evaluation of virtual traffic can benefit
from various real-world traffic datasets.

5.2. Motion Planning and Decision-Making

Motion planning and decision-making are critical for autonomous
agents to navigate in their environments. In this section, we review
several learning-based motion planning methods and decision-
making algorithms for autonomous vehicles and other intelligent
agents. We refer interested readers to additional review articles in-
clude [KQCD15, PČY∗16, SAMR18] for further reading.

Pomerleau [Pom89] introduced ALVINN (Autonomous Land
vehicle In a Neural Network), which has pioneered end-to-end ap-
proach for autonomous navigation. The ALVINN takes the images
from cameras and laser range finders as the input to navigate a vehi-
cle. Instead of taking the mediated perception for driving decision-
making and the behavior reflex with regressors approaches, Chen
et al. [CSKX15] map several affordance measures in driving with
images-based direct perception. A deep convolutional neural net-
work (CNN) is trained based on the screen-shots from a car racing
video game TORCS with labels. This method was tested on car-
mounted smartphone videos and the KITTI dataset [GLSU13].

With a variety of acquired traffic datasets and the development
of advanced computing devices, more end-to-end deep learning
frameworks for autonomous driving have been developed over
the years. Bojarski et al. [BDTD∗16] use CNN (called Pilot-
Net [BYC∗17]) to take the raw pixels from front-facing cameras
as the input to produce steering behavior. This framework is pow-
erful for road following without manual decomposition and seman-
tic abstraction. Gurghian et al. [GKB∗16] presented an end-to-
end deep CNN to estimate lane positions directly for the vehicles.
The input images are from laterally-mounted down-facing cameras,
which provides a more optimized view than those from front-facing
cameras for lane-marking.

Later, Xu et al. [XGYD17] use a FCN-LSTM framework based
on a large-scale crowd-sourced vehicle action data to learn generic
vehicle motion. This approach adopts a new paradigm to learn mod-
els from uncalibrated sources. After training, it can produce ei-
ther discrete actions (e.g., straight, stop, left turn, right turn) or a
continuous action (e.g., lane following, and steering control) for
navigating an autonomous vehicle. Instead of learning autonomous
driving model based on traffic videos data, the work by Chen et
al. [CWL∗18] demonstrates that extra information, such as LiDAR
point clouds and videos recordings, can be useful for autonomous
driving.

Lenz et al. [LDLK17] focus on vehicle motions at a highway
entrance. They trained a deep neural network to predict vehicle
motions using Partially Observable Markov Decision Processes
(POMDPs). Kuefler et al. [KMWK17] adopt the Generative Adver-
sarial Imitation Learning (GAIL) to learn driving behaviors. This
approach overcomes the problem of cascading errors and can pro-
duce realistic driving behaviors. Hecker et al. [HDVG18] learn a
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Table 2: Comparison of various autonomous driving datasets

Dataset Intention
Driving
Beha-
viors

Driving
Time (h)

Areas
Camera

View

Sensors & Videos
ConditionsVideo

Image
LiDAR

GPS
IMU

KITTI
[GLSU13]
[GLU12]

Semantic & geometric
understanding

- 1.4
City,

Highway
Front-view X X X

one weather
condition,
daytime

Cityscape
[COR∗16]

Visual semantic &
geometric understanding

- <100 City Front-view X - X

multiple
weather

conditions,
daytime

Comma.ai
[SH16]

Driving behavior learning X 7.25 Highway Front-view X - X
night,

daytime

BDDV
[GKB∗16]

Semantic & geometric
understanding, driving

behavior learning
X 10k

City,
Highway

Front-view X - X

multiple
weather

conditions,
daytime

Oxford
[MPLN17]

Long-term localization
& mapping

- 214 City
360-degree

view
X - X

multiple
weather

conditions,
daytime

Udacity
[Uda]

Semantic & geometric
understanding, driving

behavior learning
- 8

City,
Highway

Front-view
Left-view

Right-view
X X X

multiple
weather

conditions

HDD
[RCMS18]

Driving behavior learning,
causal reasoning

X 104
City,

Highway

Front-view
Left-view

Right-view
X X X

multiple
weather

conditions,
daytime

LiVi-Set
[CWL∗18]

Driving behavior learning X 20
City,

Highway
Front-view X X X

multiple
weather

conditions,
daytime

Drive360
[HDVG18]

Driving behavior learning X 60
City,

Highway
360-degree

view
X - X

multiple
weather

conditions,
daytime

novel end-to-end driving model by integrating the information from
surrounding 360-degrees view cameras into the route planner. The
network used in this approach directly maps the sensor outputs to
low-level driving maneuvers including steering angles and speed.
Kim et al. [KRD∗18] introduced an end-to-end, explainable driv-
ing approach for autonomous driving by incorporating a grounded
introspective explanation model. This model consists of two parts:
the first is a CNN-based visual attention mechanism that maps im-
ages to driving behaviors, and the second is an attention-based,
video-to-text model for textual explanations of model actions. Yang
et al. [YLWX18] exploit the virtual traffic data collected in CARLA
and TORCS to predict vehicle behaviors, called DU-drive (Fig. 18).
Maqueda et al. [MLG∗18] propose a deep neural network approach
to predict the steering angles of vehicles.

Reinforcement learning has also been adapted for autonomous
driving in recent years. Abbeel et al. [ADNT08] presented an ef-
ficient algorithm to mediate the trade-off between global naviga-
tion and the local planning for generating vehicle trajectories. Sil-
ver et al. [SBS13] presented a proper coupled cost functions for
autonomous navigation systems to balance different preferences
including where and how a vehicle should be driven. Lillicrap et
al. [LHP∗15] adopt a deep Q-Learning algorithm to implement an
actor-critic, model-free system that learns a policy to lead a vehicle
to stay on the track in a simulated driving environment. Kuderer et
al. [KGB15] proposed a feature-based inverse reinforcement learn-
ing (IRL) method to learn individual driving styles for autonomous
driving. Wolf et al. [WHW∗17] presented a Deep Q-Networks
(DQN) to steer a vehicle in 3D physics simulations. In this ap-
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Figure 18: The architecture of DU-Drive [YLWX18]. The model is closely related to conditional GAN. The generator network G transforms
an real image to a virtual image, from which the vehicle command is predicted by the predictor network P. The discriminator network D
distinguishes fake virtual images from true virtual images. Both the adversarial objective and the prediction objective drive the generator G
to produce the virtual representation that yields the best prediction result.

proach, the goal of a vehicle is to follow the lane to complete laps
on arbitrary courses, and an action-based reward function is mo-
tivated by a potential in real word reinforcement learning scenar-
ios. Pan et al. [PYWL17] use a novel realistic translation network
(VISRI) to train an autonomous driving model in a virtual environ-
ment and then use it in the real-world environment. In this virtual-
to-real reinforcement learning framework, the images from virtual
environment are segmented to scene-parsing representations first
and then are translated to synthetic images. Liang et al. [LWYX18]
presented a general Controllable Imitative Reinforcement Learning
(CIRL) approach to alleviate the low exploration efficiency for a
large continuous action space. Based on the vision inputs directly
from the CARLA simulator, autonomous driving can be achieved
with a high success rate.

In order to efficiently and safely navigate vehicles in complex
traffic environments, autonomous vehicles need to forecast the mo-
tions of surrounding vehicles. The interaction among vehicles and
pedestrians should be accurately represented [LVL14]. The task of
trajectory prediction can be divided to several categories: physics-
based, maneuver-based, and interaction-aware models. Also, a sig-
nificant amount of deep learning based works have been done for
human trajectory prediction [AGR∗16, VMO18, GJFF∗18, MA18,
SKS∗19, XPG18, HST∗18]. Here we limit our focus to vehicle tra-
jectory prediction using deep neural networks.

Lee et al. [LCV∗17] proposed a Deep Stochastic IOC RNN
Encoder-decoder framework (DESIRE) to predict future distances
for interacting agents in dynamic scenes, which can produce accu-
rate vehicle trajectories in driving scenarios. Kim et al. [KKK∗17]
proposed a LSTM-based probabilistic vehicle trajectory prediction
approach which uses an occupancy grid map to characterize the
driving environment. Deo and Trivedi [DT18] adopt a convolu-
tional social pooling network to predict vehicle trajectories on high-

ways. The whole network includes a LSTM encoder, convolutional
social pooling layers, and a maneuver-based decoder. Specifically,
it first uses a LSTM encoder to learn vehicle dynamics based on
track history. Then, it uses convolutional social pooling layers to
capture the inter-dependencies of the trajectories of all vehicles,
and finally it trains a maneuver-based LSTM decoder to predict a
distribution of future vehicle trajectories.

5.3. Simulation for Autonomous Driving

Although the development of machine learning approaches largely
facilitates the motion planing and decision-making in autonomous
driving, the amount of real-world data is still insufficient to cover
many complex traffic scenarios, thus constraining autonomous
driving systems from learning diverse driving strategies and, more
importantly, recovery actions in dangerous situations. This makes
unmanned vehicles always adopt the most conservative and inef-
ficient decisions for safety reasons. It has been reported that au-
tonomous vehicles have caused some fatal accidents. These ob-
servations have stimulated the development of a high-fidelity driv-
ing simulator as an alternative and effective tool to provide various
types of traffic conditions for training autonomous vehicles. In ad-
dition, a simulator can enable comprehensive and thorough safety
tests of an autonomous vehicle before its deployment in the real
world [ARB∗15, APPI11, LF09].

In fact, simulation has been used for training driving models
since the early days of autonomous driving research [Pom89].
Later, racing simulators have been used to evaluate various
driving approaches. For example, Chen et al. [CSKX15] use
TORCS [WEG∗00] to evaluate the proposed direct perception
model for autonomous driving. Recently, researchers [RVRK16,
JRBM∗17, RHK17] leverage Grand Theft Auto V (GTA V) to de-
rive autonomous driving policies, which result in comparable per-
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Figure 19: A street traffic in the CARLA Simulator [DRC∗17],
shown from a third-person view in four weather conditions. Clock-
wise from top left: clear day, daytime rain, daytime shortly after
rain, and clear sunset.

formance to control policies that derived from manually annotated
real-world images.

CARLA [DRC∗17], as an open-source simulator, has been de-
veloped to support development, training, and validation of au-
tonomous urban driving models. This simulation platform supports
flexible setup of sensor suites and provides signals that can be used
to train driving strategies. The signals include GPS coordinates,
speed, acceleration/deceleration, and detailed data on collisions.
A wide range of environmental factors can be specified, includ-
ing weather and time of day (Fig. 19). With these settings, CARLA
has been used to study the performance of many autonomous driv-
ing approaches, including classic modular approaches, end-to-end
trained models via imitation learning, and end-to-end trained mod-
els via reinforcement learning.

Best et al. [BNP∗18] presented AutonoVi-Sim, a high-fidelity
simulation platform for autonomous driving data generation and
driving strategy testing. AutonoVi-Sim is a collection of high-level
extensible modules. Similar to CARLA, it also supports specifica-
tion of vehicle sensor systems and the changing of time of day and
weather conditions, and movements of non-vehicle participants in
traffic such as cyclists and pedestrians.

In addition, several recent projects seek to build simulation plat-
forms to train end-to-end driving systems and provide rich virtual
traffic scenarios for the testing of autonomous driving. An exam-
ple project is Apollo [apo18], which incorporates a large amount
of driving data from actual traffic and virtual traffic. The goal of
Apollo is to create a powerful virtual close-loop for the develop-
ment of autonomous driving systems: from algorithms to evalua-
tion, and back to updating algorithms. One limitation of Apollo is
that the virtual traffic data are created manually with specific and
well-defined obstacles and traffic signals, which are less realistic
and complex than real-world traffic conditions.

Recently, Li et al. [LPZ∗19] have developed a simulation frame-
work, AADS, which can augment real images with simulated traf-
fic flows for generating realistic-looking images. Using data from

LiDAR and cameras, the framework can compose simulated traffic
flows, based on actual vehicle trajectories, into the background. The
composite images could be altered to different viewpoints and are
fully annotated, which are ready to be used for development and
testing of autonomous driving systems. This framework aims to
overcome the burden of manually developing virtual environments
and the degraded performance of training autonomous vehicles us-
ing virtual images.

Another framework developed by Li et al. [LWL19], ADAPS,
takes a different perspective—enabling learning autonomous driv-
ing from accidents. The framework consists of two simulation plat-
forms. The first simulation platform runs in 3D and is used to test a
learned policy and simulate accidents; the second simulation plat-
form runs in 2D and is used to analyze an occurred accident in
the first simulation platform and resolve the accident by providing
alternative safe trajectories. A large quantity of annotated data is
then generated based on the safe trajectories for training and up-
dating a control policy. ADAPS also represents a more efficient
online learning mechanism compared to previous techniques such
as DAGGER [RGB11], which can greatly reduce the number of
iterations required to derive a robust control policy.

6. Discussion

In this section, we discuss potential future research directions.

First, a traffic simulation model should be able to model as
many complex traffic behaviors as possible, while maintaining
the computational efficiency. However, for existing microscopic
traffic models, each behavior of the vehicle, such as accelera-
tion/deceleration and lane-changing, is individually modeled and
controlled. In addition, microscopic traffic models focus more
on the vehicle movement in forward direction, which is limited
in a way that lane-changing behaviors, and vehicle lateral mo-
tions in general, are ignored. In addition, as the motion of a
vehicle is mainly affected by its leading vehicle according to
the car-following rule, the resulting simulation rarely involves
other vehicles in the field of view for computing the accelera-
tion/deceleration. In order to simulate more realistic traffic flows, it
is necessary to develop a unified, scalable simulation framework for
rich vehicle behaviors, including acceleration/deceleration, staying
in lane, lane changing, and interactions with non-vehicle traffic par-
ticipants (e.g., pedestrians and bicyclists).

Second, despite of many successful demonstrations, current
data-driven traffic animation approaches cannot handle non-trivial
interactions between vehicles and other moving objects (e.g.,
pedestrians). One of the main reasons is that it is a daunting task
to acquire large-scale, spatial-temporal data of vehicles, pedestri-
ans, and the environment factors at the same time. For traffic re-
construction, in-road sensors and GPS data, as two types of traffic
data, are usually utilized separately in computation. Meanwhile,
the accuracy of traffic reconstruction is limited by the available
data. Thus, combining various data sources, such as in-road sen-
sors, video streams, and GPS traces, has the potential to improve
the reconstruction accuracy.

Third, regarding the evaluation of fidelity of virtual traffic, the
dictionary-based metric [CDX∗18] provides a feasible solution.
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However, as a common problem with data-driven methods, the
quality and composition of traffic data have a direct and substantial
impact on the generated dictionary, therefore affecting the evalu-
ation outcome. In addition, this framework extracts each vehicle’s
acceleration, velocity, relative speed, and gap distance to its front
vehicle to describe the vehicle’s instantaneous states. To better cap-
ture traffic patterns for dictionary learning, more features on traffic
flow, including vehicle kinematic constraints, road restrictions, and
driver characteristics should also be considered and extracted. For
macroscopic traffic simulation, it is necessary to develop fidelity
metrics that can measure traffic flows in an aggregate fashion, in-
cluding flow density and velocity.

Lastly, for autonomous driving, addressing the interactions be-
tween autonomous vehicles and other road users remains a chal-
lenge. Existing simulators consider less mutual influences between
the two parties. To give some examples, in the Apollo simulation
platform [apo18] and the work of [BNP∗18], both simulations
implement two types of non-vehicle traffic participants: pedes-
trians and cyclists. However, the behaviors of these non-vehicle
agents are pre-defined, so they cannot react to vehicles in real
time. In addition, although dynamic pedestrians are introduced in
CARLA [DRC∗17], the interactions between vehicles and pedes-
trians are handled in a simple, pre-specified way: pedestrians will
check if there are any vehicles nearby before their movements, then
continuing the movements without further checking.

7. Conclusion

Methods for modeling and simulating traffic flows have seen con-
siderable progress since their introduction nearly 60 years ago. In
Computer Graphics, various traffic simulation techniques based on
traffic flow models have been proposed in the last decade. In addi-
tion, with advancements in sensing technology, many data-driven
approaches have been proposed for developing traffic animation
and simulation. The increasing amount of traffic data from vari-
ous sensors can also contribute to the development and testing of
autonomous driving algorithms.

In this report, we survey the key traffic simulation and animation
techniques, emphasizing, but not limited to, the discussion from the
computer graphics perspective. A subset of these methods focuses
on simulating traffic flow based on macroscopic, microscopic, and
mesoscopic flow models. Other methods utilize the collected traf-
fic data to reconstruct traffic, synthesize new traffic flows, or learn
characteristics of various traffic patterns. Various evaluation and
validation techniques of virtual traffic are also discussed.

As an important application, recent developments in autonomous
driving using traffic simulations are also presented. Especially,
we have focused on data-driven methods, motion planning tech-
niques, decision-making algorithms, and simulators created for au-
tonomous driving development. We have also explored some re-
search challenges and future directions.

In conclusion, traffic simulation and animation will continue
to evolve and advance. Many exciting applications and novel ap-
proaches remain to be explored and developed. In terms of au-
tonomous driving research, we believe that the various models and

applications discussed in this survey would stimulate interesting re-
search topics for years to come.
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