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Abstract
In this paper we present a novel shape-constrained fireworks simulation method
with rich textures in an HMD (Helmet Mounted Display) virtual environment
using sketched feature lines as input. Our approach first retrieves an object
from a three-dimensional (3D) model database using a sketch-based 3D shape
retrieval algorithm. Then, in order to approximate models with complex struc-
tures, we introduce a novel point sampling algorithm based on Gaussian cur-
vatures, which stores not only the positions of the selected vertices but also the
texture (UV) coordinates information for texture display. In addition, we intro-
duce a multilevel explosion process so that the fireworks can dynamically form
specific, visually pleasing shapes. Through our experiments, we demonstrate
that our approach can produce better results than state-of-the-art approaches.
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1 INTRODUCTION

In recent decades the simulation of natural phenomena such as flames, smokes, etc. has been widely applied in com-
puter games, films, education, virtual reality, and many other fields. Among many existing techniques, particle systems1

have been widely considered as a powerful technique in computer graphics that uses a large number of small sprites,
three-dimensional (3D) models, or other graphical primitives to simulate some fuzzy phenomena.

Some research works have been done to simulate fireworks based on particle systems, whose vibrant hues and dazzling
starbursts can bring beauty to the silence and darkness of night, since fireworks are often considered to be the highlights
of traditional festivals and other special events. In the recent related work,2 Zhao et al. presented a fireworks controller to
simulate shape-constrained fireworks in real time. With the popularity of consumer-grade virtual reality (VR) devices,3
especially helmet-mounted display (HMD) devices, ordinary users are affordable to experience the highly immersive
experience of watching virtual fireworks at home. However, Zhao et al.'s method2 has the following limitations when
used in HMD virtual environments. First, it relies on the keyboard to input a specific mesh model, which interrupts the
user's immersive experience in a HMD virtual environment. Second, it approximates shapes with bunches of fireworks,
which may fail to describe geometric features for complex objects. Third, it does not simulate textured objects that can
potentially exhibit more diverse and stunning visual effects.

Although a sketch-based system like Teddy can design rotund objects efficiently,4 it may take a first-time user a few
minutes to master the provided operations. For scenarios like VR or science and technology museums, it is still too com-
plex for an ordinary visitor to learn. Moreover, such a system does not support the design of realistic complex objects with
rich textures.
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F I G U R E 1 The process of the “tellurion” fireworks simulation: a, sketch drawing; b, fireworks emitting from horizontal; c, first-level
explosion; d and e, second-level explosion; f, fireworks fading away

Inspired by the above observations, in this work we develop a new sketch-based fireworks simulation system to exhibit
3D complex models with abundant texture information in virtual environments. First, a user sketches the desired model,
as seen from a certain viewpoint (Figure 1a). With the sketch as the input for our sketch-based object retrieval system, the
resulting model is obtained after comparisons with line drawings of all the objects from probable view directions. Then, to
efficiently simulate the shape of the retrieved object, we propose a Gaussian curvatures-based point sampling algorithm,
where the positions of the vertices unevenly selected can be taken as the target positions of the simulation process. We
record their 3D positions and their texture (UV) coordinates separately to display both the shape and texture information
naturally. In addition, we introduce a new concept of multi-level explosions (Figure 1c-f), since it is often infeasible to form
complex shapes with a single explosion. To better determine the shape of each level, the K-means clustering algorithm5

is applied to the sampled vertices. To provide immersive interaction experience for users, we integrate our system into
HMD virtual environment so that users are able to sketch what they want with a controller in hand while indulging in
the virtual scene.

The contributions of our work can be summarized as follows:

• It introduces a 3D shape retrieval-based shape-constrained fireworks simulation method using sketches in head
mounted virtual environments.

• It introduces a new point sampling algorithm based on Gaussian curvatures. Instead of evenly approximating an object,
our new sampling method selects a different number of points according to the banding property of the object in order
to simulate models with complex silhouettes.

• It exhibits not only the shape but also the texture information of the object retrieved during the exploding of fireworks
in order to generate realistic visual effects.

2 RELATED WORK

2.1 Shape-constrained animation

In recent years, shape-constrained animation has attracted increasing attentions because it can produce aestheti-
cally pleasing visual effects. Wang et al. proposed a sketch-based shape-preserving tree animation method, which can
transform a leafy tree into custom crown shapes defined by sketches.6 For creating morphing effects between two
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arbitrary 3D objects, Wang et al. combined the features of 3D morphing and flock animation by taking each tetrahedron
decomposed from 3D objects as an agent.7 Recently Chen et al. proposed a multi-agent model for large-scale controllable
shape-constrained simulation of flying insects.8 It can guide aggregate insects smoothly deforming into a target shape
using a force model. Shape-constrained animation has also been used in fluid and smoke simulations. Yang et al. pre-
sented a synthesis method to improve small-scale turbulence details for controllable smoke animations constrained by
shapes and paths.9 Hu et al. presented an interface to support two-dimensional (2D) sketch-based fluid design with a
perceptual understanding of human sketches.10

2.2 Sketch-based 3D shape retrieval

Sketch-based 3D shape retrieval is to retrieve 3D models based on an input 2D sketch. To compute the similarity between
a sketch image and a 3D model, several existing content-based image retrieval methods find the best match based on the
projected images of the model. Funkhouser et al. presented a sketch-based matching approach, where thumbnail images
are prerendered with the boundary contours of each 3D object from 13 orthographic view directions.11 Assuming that
users usually express their concept of a 3D shape with three 2D views without missing any information, the method by
Pu et al.12 only needs three or six views that can be determined in real time. Their sketch user interface also provides a
robust way to allow users to make small mistakes during the sketch drawing. Saavedra et al.13 efficiently compute the
histogram of local edge orientations, which is invariant to scaling and translation transformations. Yoon et al.14 proposed
an approach to compute descriptors by analyzing diffusion tensor fields of suggestive contour images that are rendered
from different viewpoints to measure the similarities with the user-drawn sketch.

2.3 Fireworks simulations

Simulation of fuzzy objects is one important subject in the field of computer graphics. The particle system approach was
firstly proposed by Reeves to simulate fuzzy irregular objects (e.g., fires, clouds, water, etc.).1 A particle system consists of
a number of individual particles, each of which has its own properties that can be changed over time. Later, researchers
introduced various fireworks simulation methods based on particle systems. Zhao et al. proposed a Graphics Processing
Unit (GPU)-based shape-constrained fireworks simulation pipeline, where a dual-depth-peeling-based point sampling
algorithm is employed to provide good distributions.2 Chang et al. introduced a Compute Unified Device Architecture
(CUDA)-based framework to generate dynamic fireworks with high efficiency and frame rates.15 Kim et al. introduced
a sample-based control method that enables the formation of a target shape by assembling fire-flakes.16 However, these
methods do not tackle fireworks simulations for 3D models with complex structures. In particular, existing point sampling
algorithms in these methods fail to approximate sharp outlines and can only associate one or a limited number of colors
with the simulation, which largely undermine the vividness and realism of fireworks effects.

3 PIPELINE OVERVIEW

In the offline process, we first generate line drawings of each 3D model in our database from 102 different view direc-
tions using line rendering techniques. Then, we encode the line drawings with a bag-of-features (BoF) approach through
Gabor filters to form local descriptors and quantify these descriptors to achieve the resilience to both global and local
deformations.

At runtime, based on the histogram features of an input user-drawn sketch, we retrieve the best matched 3D object
from the database, whose projection is the most similar to the input sketch. To curb the shape of fireworks for maximal
approximation, we employ a point sampling algorithm based on the Gaussian curvatures of the discrete vertices of the
3D object. Besides storing the positions of the sampled vertices, the texture (UV) coordinates of the sampled vertices are
also recorded for texture mapping on particles in our work. After point sampling, the K-means clustering algorithm is
applied to the sampled vertices to determine seeds as the firework emitters at the second level of the fireworks explosion.
For each vertex, we use a bilinear interpolation algorithm to obtain the filtered pixel color from its corresponding texture
image and set it as the color of the particle during the fireworks explosion. Figure 2 shows the pipeline of our fireworks
simulation system.
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F I G U R E 2 The overview of our fireworks simulation system. In the offline process, our framework sets up a three-dimensional model
database for the online querying. In the online process, after a user draws a sketch that he/she wants to find in the helmet-mounted
display-based VR environment, our approach retrieves the object of interest and performs a visually realistic, shape-constrained fireworks
simulation

4 SKETCH-BASED OBJECT RETRIEVAL

We develop a sketch-based object retrieval system based on the previous work by Eitz et al.,17 which has been demon-
strated to have a high-quality retrieval performance. The core idea of this approach is the BoF model,18,19 which has been
widely used for image classification by treating image features as words. This model can be briefly described as follows:
(a) extract features from a training set of images; (b) learn a “visual vocabulary” from these features through a clustering
process; (c) quantize the features based on the visual vocabulary; and (d) redefine the images according to the frequencies
of “visual words.” Thus, the definition of the BoF model can be conceptually regarded as the “histogram representation
based on independent features.”.20 However, this model itself is designed to handle 2D image matching, and it has not
been applied or extended to solve the problem of sketch-based 3D object retrieval.

To convert the features of 3D objects to those of 2D images, we generate a set of 2D drawings for each 3D model in
our dataset. In order to simplify the pipeline, we uniformly select 102 viewpoints on a sphere with the model enclosed
to project it into line drawings. With groups of line drawings generated from the 3D objects in the dataset, we extract
their features based on a bank of Gabor filters to encode them as local image descriptors. By employing the K-means
clustering algorithm, a visual vocabulary is built, where the centroid of each resulting cluster represents a visual word.
The number of clusters, as an important parameter that strongly influences the retrieval performance, is empirically set to
2,500 to obtain satisfactory results in our experiments. Through the quantization of local image descriptors for each line
drawing, the histograms of visual word frequencies are defined and stored in an inverted index data structure21 for online
query.

At runtime, the user first draws a sketch with a wireless VR controller in hand and finishes his/her submission.
Then, our approach at the back-end performs the following operations on the sketch: extracting local image descriptors,
quantizing them, and encoding them as a histogram of the occurrence frequencies of the visual words. In this process, the
Term frequency-inverse document frequency weighting functions21 are used to determine the importances of the visual
words, and we return the model with the best matched view after computing the similarities between the histogram of
the query sketch and those in the data structure of inverted index.

5 FIREWORKS ANIMATION CONTROL

5.1 Point sampling

The shape of fireworks is controlled by the triangular mesh of the retrieved model. Using the vertices of the mesh to
determine the properties of particles might be a straightforward solution. But for a complex model, its number of vertices
may be too large to meet the requirements for real-time fireworks simulation, or not large enough to exhibit details
of the fireworks if the model is over-simplified. As a result, point sampling is needed to achieve satisfactory fireworks
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simulations. Although the efficiency of the dual depth peeling algorithm2 has been demonstrated for vertice sampling,
it is still difficult to deal with complex models even using the dual depth peeling. To tackle this issue, we present a new
point sampling algorithm based on Gaussian curvatures. Note that when the retrieved model has been loaded into the
system, we first evaluate its maximum distance between any two vertices along the directions of three axes (i.e., x, y, and
z directions). Based on the proportions between the maximum distances and the preset standard distances, the model is
accordingly scaled to a fixed size.

5.1.1 Gaussian curvatures

Mapping a surface to the unit sphere sets up the correspondences between the points on the surface and the points on
the sphere, which is also called Gaussian mapping. Gaussian curvature K is the product of two principal curvatures, 𝜅1
and 𝜅2, at a point on the surface,

K = 𝜅1.𝜅2, (1)

the geometric interpretation of which refers to the area of the sphere or the limit of the local area of the surface. Note that
the Gaussian curvature reflects the degree of the local curvature of the surface.

Given the positive and negative values of Gaussian curvatures, it is convenient to define the structure of the surface
at a point. The Gaussian curvature K > 0 represents an elliptic point, K < 0 represents a hyperbolic point, and K = 0
represents a plane or a parabolic point. Besides, Gaussian curvature is the intrinsic quantity of the surface, which is only
related to the first basic type of the surface and has nothing to do with the selection and parameterization of the axes.
Therefore, for every vertex on the input triangle mesh, we compute its discrete Gaussian curvature. Based on the obtained
curvature value, a corresponding number of points are selected within the range of the triangle mesh whose formation
includes particular vertices.

5.1.2 Approximation in discrete geometry

In recent years researchers have proposed many methods to estimate the micro-components of discrete surfaces. At least
four methods have been designed to estimate the discrete Gaussian curvatures for triangle mesh surfaces.22–25 In particu-
lar, the method in Reference 25 is also called the Voronoi method since it uses average Voronoi cells. Based on the research
study by Vasa et al.,26 the Voronoi method is optimal for estimating various curvatures of triangle mesh surfaces.

The basic idea of the Voronoi method is to regard the smooth surface as the limit or linear approximation of a cluster
of triangular patches. The measure of each vertex on a triangular patch can be taken as the average measure within a
small neighborhood, called Voronoi region (Figure 3). Thus, the discrete form of Gaussian curvatures can be obtained
based on discrete differential geometry as follows,

K(v) = 1
A(v)

(
2𝜋 −

∑
vi∈N(v)

𝜃i

)
.

Here,
∑

vi∈N(v)𝜃i represents the sum of the angles corresponding to the adjacent triangles, and A(v) is the sum of fragmental
areas neighboring to v.

Different discrete methods can be used to compute A(v):

• For an acute triangle (see Figure 4a), connect its circumcenter o1 with the midpoints p1, q1 of the sides except the one
opposite to a1 , and obtain a new area Aacute(v) (grey).

• For an obtuse triangle (see Figure 4b), connect the midpoint o2 of the side opposite to the obtuse angle with the
midpoints p2, q2 of the other two sides separately, and obtain a new area Aobtuse(v) (grey).

After computing the Gaussian curvature of every vertex on triangular patches, we determine the number of sampled
points randomly in the neighboring triangular areas of a vertex, based on the different levels partitioned corresponding
to the absolute value of Gaussian curvature. We explain it further in Section 7.
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F I G U R E 3 An example of Voronoi region which appears in grey

v

v
1

v
2

o
1

p
1

q
1

(a)

v

v
3

v
4

o
2

q
2

p
2

(b)

F I G U R E 4 Discrete methods to compute A(v) : a, for an acute triangle; b, for an
obtuse triangle

5.2 Multilevel Explosions

5.2.1 Explosion levels

The common approach to approximate the full process of a fireworks explosion is to calculate the emission velocities and
directions of the particles' motions based on their final coordinates and the explosion point (generally, all particles in the
system have the same explosion point). However, the time from particle emission to the forming of the target shape, about
2 to 3 seconds, is typically too short for fireworks to be watched clearly and sharply. Real-world fireworks often explode
several times in order to form the target shape aloft. To increase the ornamental value, we determine an intermediate
shape as a transition from the single emitter to the ultimate shape formed by particles and extend the method proposed
by Zhao et al.2 to achieve shape control in the system. The cycle for each fireworks explosion is extended to around 9
seconds in our experiments.

With the coordinates of the emission point where the explosion starts, the number and coordinates of the final points
where particles reach at the end, the K-means clustering algorithm is applied to define clustering centers, which together
form the intermediate shape after convergence. Assuming N denotes the number of final points, and K denotes the num-
ber of selected centroids, the K-means clustering algorithm employed to achieve second-level explosions can be described
as follows:

1. Randomly select K from N particles as the initial centroids.
2. For each remaining particle, calculate its distance to every centroid and classify it into the set of the nearest centroid.
3. Recalculate the centroids based on the sets that have been obtained.
4. Repeat steps 2 and 3 until the distance between the new centroid and the centroid of the last update is smaller than a

user-specified threshold. The clustering step ends.

Therefore, fireworks explosions are divided into two processes. The explosion process from the emission point
(Figure 5a) to the intermediate shape (Figure 5b) is the first-level explosion, and the explosion from the intermediate
shape to the refined shape of the retrieved object (Figure 5d) is the second-level explosion.

5.2.2 Simulate fireworks explosions

The first-level explosion is achieved by a single particle system with K particles, which starts from the fireworks launching
point and fall on their corresponding centroids. Let g be the gravitational acceleration, centroid[i] be the target position
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F I G U R E 5 Explosion levels. a, the
emission point; b, the intermediate shape; c, the
transition shape; d, the refined shape of the
retrieved object

(a) (b)

(c) (d)

of particle i, di be the distance vector from mcenter, which is the launching point (ie, the geometric center of the retrieved
3D model), to centroid[i], and ls be the duration of the explosion. Then, vi, the initial velocity vector of particle i, can be
calculated as follows:

Algorithm 1. First-level Explosion Simulation

1: function FirstExplode(centroid)
2: n ← centroid.length
3: for i = 0 → n − 1 do
4: di ← centroid[i] − mcenter
5: vi.x ← di.x∕ls
6: vi.y ← (di.y + 0.5 ∗ g ∗ ls ∗ ls)∕ls
7: vi.z ← di.z∕ls
8: end for
9: end function

Then, assuming t = 0 when the first-level explosion starts, pt
i , the position of particle i at time t can be calculated as

follows:
pt

i = mcenter + vi ∗ t.

The second-level explosion is achieved by K particle systems, in which the number of all the particles is N. The starting
point of each second-level particle system is its corresponding centroid in the first level, and each particle in the system
will finally arrive at its target position. To this end, the shape of the retrieved 3D object will be formed. The method
used to calculate the initial velocity vectors of the particles in the K particle systems is the same as that in the first-level
explosion.

In the explosion of our simulated fireworks, each particle is initialized with a high speed and its size grows explosively.
Then, the particle's size will shrink slowly and its speed will decrease rapidly because of air resistance. In addition, we
flick the brightness of each particle during the whole process in order to improve the realism.

5.2.3 Map textures

By dividing the explosions into multiple levels, we build an integrated fireworks simulation system conforming to the
laws of physics. However, the firework effects achieved through mono-color particles fail to approximate the textures on
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F I G U R E 6 The comparison with a real-world fireworks display : a-c, the process of a real firework display; d, the first-level explosion
in our simulation system; e, the second-level explosion in our simulation system; and f, the shape of the three-dimensional model “rose” is
fully formed

the retrieved 3D model. As aforementioned, at the previous step we have selected a specific number of points from the
neighboring area of triangle patches for each vertex, which is described in Section 5.1. In order to map each selected point
with the color sampled from the model's texture, we employ the same point sampling method on the UV coordinates of
the vertices of each triangle patch, and then use bilinear interpolation algorithm to obtain the precise texture information
of a sampled point and set it as the initial color of the particle, which represents the sampled point in the second-level
explosion. Figure 6 shows the comparison with a real-world fireworks display.

6 USER INTERFACES

Pursuing the sense of reality, we integrated our fireworks simulation system into HMD virtual environments. Wearing
the HTC Vive headset, users can find themselves immersed in the natural scenery and surrounding sound effects. We
built a night scene of a lake with a distant city and mountains scattered under the moonlight, in order to emphasize the
stunning flares of fireworks explosions.

Based on the trail renderer component in the Unity3D engine, the controller, represented by a magic wand in the main
scene, can be held in hand, with which users can draw numerous curves until they submit the final sketch to trigger the
fireworks simulation. Figure 7 shows a user who is wearing the HMD device to draw sketches in virtual environment.

F I G U R E 7 A user wears the helmet-mounted display devices to draw
sketches in the virtual environment
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7 RESULTS AND DISCUSSION

In our experiments, we set the number of the selected centroids K to 70 and the gravitational acceleration g to 9.81. All our
experiments were conducted on a desktop computer with 3.30 GHz Intel Core i7 CPU, 4GB of memory and an NVIDIA
GeForce GTX 970 GPU.

In order to verify our point sampling method, we compare our approach to the state-of-the-art methods by Yuksel
et al.27 and the Houdini engine28 in Figure 8. In our experiments, each model is sampled with the same number of points.
Results show that our method (b) can more faithfully preserve the sharp features of input models than the other methods.
Although the Yuksel et al.'s method (c) and the Houdini engine (d) can also produce results with good shapes, they may
loss some important features, such as the eyes and teeth of the pumpkin cartoon model in Figure 8. Statistical results show
that our method is about three times faster than the Houdini engine.28 Note that our approach needs to have a sufficient
number of point samples (about 10,000) in order to depict the underlying shape. Although the Yuksel et al.'s method can
generate Poisson disk sample sets with a desired size,27 it needs to take several seconds for an ordinary model with 10,000
faces (see Table 1), which prevents its use from real-time VR applications. By contrast, it only takes fewer than 0.1 second
to perform the point sampling with our approach. The Yuksel et al.'s method27 first samples M(M = 3N) points from the
input mesh and then reduces them to N by a greedy elimination algorithm. Their method's computational complexity is
O(NlogN) with a KD-tree while ours is only O(N).

Figure 9 shows a result comparison between our method and the previous shape-constrained simulation approach by
Zhao et al..2 Our result can better preserve the sharp features of the input Stanford bunny model than that by Zhao et al.'s
work,2 which benefits from our new point sampling method based on Gaussian curvatures.

(a) (b) (c) (d)

F I G U R E 8 Comparisons to the state-of-the-art methods on point sampling. For the three-dimensional models in (a), our sampling
method can faithfully capture the sharp features of input models (b), while the results by the Yuksel et al.'s method27 (c) and the Houdini
engine28 (d) may loss some important features, such as the eyes and teeth of the pumpkin model

T A B L E 1 Sampling time for the Yuksel et al.'s method,27 the Houdini engine28 and our method. As
the Yuksel et al.'s method will take several seconds for an ordinary model with 10,000 faces, it is not
appropriate for real-time VR applications. Time is measured in seconds.

Faces Sampling Points
Time for Yuksel
et al.'s method27 Time for Houdini

Time for
our method

44,295 260,146 25.236 1.126 0.318

18,728 105,992 7.783 0.478 0.140

7,152 30,168 1.510 0.146 0.043

1,322 5,692 0.208 0.053 0.009



10 of 13 CUI et al.

(a) (b)

F I G U R E 9 The comparison between our method and
Zhao et al.'s approach:2 a, the result by Reference 2; b, is the
result by our method

(a) (b) (c)

F I G U R E 10 For the rose model in (a), our method can capture
the texture information (b) realistically, while (c) is the result without
texture information

F I G U R E 11 Some results by our approach. The first column shows the intermediate shapes generated after the first-level explosion.
The second and third columns show the the processes of the second-level explosion, where the refined shapes are gradually formed. The
fourth column shows the fading of the simulated fireworks fading after the second-level explosion

Figure 10 shows a comparison of the results by our method without and with texture information. The fireworks
simulation result on the rose with its texture expression is more vivid than that with a flat color. In order to measure
texture preservation quantitatively, we utilize the Euclidean distance between the color histograms of two images. Taking
a rose model in Figure 10(a) as input, the distance between the rendered image of the input model (a) and our result (b)
is 0.64, while the distance between (a) and the result without texture information (c) is 1.02. This example validates that
our method can better preserve texture information.

Figure 11 shows the results produced by our fireworks simulation system. In this figure, the first column shows
the intermediate shapes, which are determined based on the outcome of the K-means clustering algorithm on sample
points. The second and third columns show the transformations from the intermediate shapes to the precise shapes of the
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(a) t=0.0 sec (b) t=0.5 sec (c) t=1.0 sec (d) t=1.5 sec

(e) t=2.0 sec (f) t=2.5 sec (g) t=3.0 sec (h) t=3.5 sec

F I G U R E 12 Results of the Harley Quinn's fireworks simulation by our approach

T A B L E 2 Performance statistics of our fireworks simulation system. Time is measured in seconds

Model Vertices number Triangles number Samples number Sampling time Clustering time

Basketball 10,648 18,728 145,192 0.216 2.163

Cupcake 12,389 24,448 150,809 0.253 2.513

Pitaya 16,228 28,702 210,409 0.324 3.597

retrieved 3D models. The last column shows the fading of the fireworks aloft. Please refer to the accompanying demo video
for the animation results. We also used a more complicated model, Harley Quinn, to demonstrate firework simulations
(Figure 12).

We also show the performance statistics of our fireworks simulation system in Table 2. For a retrieved 3D model, the
time complexity of our method is linear. Our approach can generate results in real time in HMD virtual environments.

8 CONCLUSION

In this paper, we present a novel shape-constrained virtual fireworks simulation approach in HMD virtual environments.
Its sketch-based retrieval algorithm can efficiently retrieve the 3D object whose line drawing is the most similar to the
user-provided sketch from a specific viewpoint of projection. The point sampling method based on Gaussian curvature,
introduced in our work, provides a balanced distribution to simulate the shape of the retrieved 3D model even with
complex structures. Based on the outcome of the K-means clustering algorithm on sampled points, multilevel explosions
are designed to imitate physical features of fireworks.

Although our approach can produce visually appealing results, certain limitations still exist in our current approach.
It does not simulate the smoke released by fireworks explosions, which could potentially influence the degree of verisimil-
itude. Also, our current approach mainly focuses on one common type of fireworks, Rocket, which reduces the diversity
of fireworks display.

In the future, we plan to combine our simulation approach with projection systems by exploring the concept of holo-
graphic fireworks displays. Since the scope of user interactions is strictly limited with VR controllers (e.g., HTC Vive
devices), fireworks simulation with holographic techniques can be used virtually anywhere, indoor, or outdoor.
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