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Abstract
Curve skeleton is an important shape descriptor with many potential applications in computer graphics, visualization and ma-
chine intelligence. We present a curve skeleton expression based on the set of the cross-section centroids from a point cloud
model and propose a corresponding extraction approach. We first provide the substitution of a distance field for a 3D point cloud
model, and then combine it with curvatures to capture hybrid feature points. By introducing relevant facets and points, we shift
these hybrid feature points along the skeleton-guided normal directions to approach local centroids, simplify them through a
tensor-based spectral clustering and finally connect them to form a primary connected curve skeleton. Furthermore, we refine
the primary skeleton through pruning, trimming and smoothing. We compared our results with several state-of-the-art algo-
rithms including the rotational symmetry axis (ROSA) and L1-medial methods for incomplete point cloud data to evaluate the
effectiveness and accuracy of our method.

Keywords: curve skeleton, point cloud, hybrid feature point, spectral clustering

ACM CCS: I.3.5 Computing methodologies: Computer graphics

1. Introduction

Skeleton of an object is an intuitive and effective abstraction of its
topological and geometric properties [CSM07, SP08]. It has been
widely used in a wide range of geometric tasks, including shape
analysis, shape decomposition, model retrieval, computer anima-
tion, virtual reality and 3D printing [TDS*16, BAS14, LD14].

Many previous efforts have been conducted to extract curve skele-
tons. A curve skeleton, also called the line-like representation of a
3D object, is a simplified 1D representation of the original shape,
consisting of curves only [JST16]. In spite of its simplicity, there
does not exist an unanimously accepted formal definition of the
curve skeleton [Cor07]. Recently, Dey and Sun [DS06] proposed

Zhong Li is the corresponding author.

a mathematical definition of curve skeleton based on the medial
geodesic function. However, it is quite difficult to compute the
curve-skeleton exactly as they defined, which is based on the medial
axis and medial geodesic function approximation. An ideal curve
skeleton is expected to have the following properties: Homotopic,
invariant under isometric transformations, thinness, centredness,
smoothness, componentwise differentiation, reliability and robust-
ness [CSM07]. Many existing curve skeleton extraction algorithms
are designed for watertight surface meshes, such as topological thin-
ning [Pal08], distance field transformations [ZT99, HF09, JST16,
SJT14], centroidal Voronoi tessellation [LLW12], Reeb graph con-
struction [GSBW11], surface contraction via mean curvature flow
[SYJT13, CK11, ATC*08], etc. In some cases, a watertight mesh
is not given as input, but a partial point cloud coming from a 3D
scanner. In these cases, the previous algorithms could not be used.
Therefore, researchers have proposed several skeleton extraction
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algorithms from raw scan data, including the generalized rota-
tional symmetry axis (ROSA)-based method [TZCO09], the L1-
medial skeleton extraction algorithm based on random sampling
[HWCO*13] and the combination of the distance field and L1-
median skeleton extraction from raw scanned point cloud data
[SPJX18]. How to obtain a centred skeleton with topology preserva-
tion from incomplete or noisy point cloud data remains a challenge.

In this paper, we propose a curve skeleton expression based on the
centroid set of the cross-sections of a 3D object, and then further
introduce a corresponding skeleton extraction from a point cloud
model. Different from existing methods, our method has the fol-
lowing contributions.

1. We search for the feature points of a point cloud model accord-
ing to the local extremes of both geometric features (i.e. mean
curvatures) and the distance field substitution. Here, the purpose
of using the distance field substitution is to acquire more feature
points to construct skeletal points for robust skeleton comple-
tion. It does not require voxelization [ZT99] and can be eas-
ily implemented based on the distances from the points inside
the shape to the three faces of the axially aligned bounding box
(AABB).

2. We optimize the skeleton-guided normal direction for each fea-
ture point, and introduce the relevant facet to search for the
relevant points of each feature point. The hybrid feature point
shifting, introduced in our work, helps to accurately construct
skeletal points.

3. We provide a novel tensor-based spectral clustering method to
classify skeleton points, which ensures the resulting curve skele-
ton to retain more details with componentwise differentiation.

Compared to Tagliasacchi et al.’s method [TZCO09], our skele-
ton extraction from a point cloud model does not require any
prior assumptions about its geometry (e.g. cylindrical) or topol-
ogy. And, compared to the random sampling algorithm by Huang
et al. [HWCO*13], our hybrid feature points are often sufficient to
accurately describe the shape of a point cloud model, even with sig-
nificantly missing data.

The remainder of this paper is organized as follows. Section 2 de-
scribes recent related works. Section 3 presents our curve skeleton
definition and the overview of its extraction method. Sections 4–6
provide the details of our skeleton extraction algorithm, including
hybrid feature points and their shifting in Section 4, skeleton point
computation through tensor-based spectral clustering and region-
growing clustering algorithm in Section 5 and skeleton points con-
nected to form the primary skeleton and skeleton refinements in Sec-
tion 6. Section 7 provides our experimental results, comparisons and
limitation discussion. Finally, Section 8 concludes the paper with
future work.

2. Related Work

Blum [B*67] defined the skeleton of a model based on the medial
axis transform (MAT) in 1967. From then on, numerous methods
have been developed to extract skeletons from 3D models. Existing
skeleton extraction methods can be roughly categorized as: volu-
metric methods, geometric methods for mesh models and geometric
methods for point cloud models.

Volumetricmethods formeshmodels extract skeletons bymak-
ing use of a regularly partitioned voxelized discrete representation.
They commonly include topological thinning and distance field op-
erations. For example, Palágyi [Pal08] proposed a parallel thinning
algorithm by applying a computed search-table. Zhou and Toga
[ZT99] used a voxel-code algorithm for distance field transforma-
tion and then connected and smoothed the extracted skeleton. Has-
souna and Farag [HF09] applied gradient vector flows via two dif-
ferent energy functions to extract the skeleton that is insensitive to
noise. Jalba et al. [JST16] contracted the boundary into the surface
skeleton or curve skeleton counterpart for voxel models. Sobiecki
et al. [SJT14] performed a comprehensive comparison on various
curve and surface skeleton extraction methods for voxel models.
Generally, these methods can produce topology-preserving skele-
tons but may contain redundant branches. Furthermore, it is often
difficult for them to produce quality skeletons for models with sig-
nificant missing data.

Geometric methods for mesh models are another category of
widely used skeleton extraction methods that only require the sur-
face information of 3D models. For example, Näf et al. [NSK*97]
extended the Voronoi graph and apply it to extract skeletons for
3D models. Lu et al. [LLW12] used Thiessen-polygons to extract
the skeletons for simple mesh models. Ge et al. [GSBW11] mod-
ified the Reeb graph method based on Morse functions to gener-
ate skeletons. Sobiecki et al. [SYJT13] gave a review of boundary
contraction methods. Chuang and Kazhdan [CK11] used fast mean
curvature flows via finite-element tracking to extract skeletons.
There exist other methods to extract skeletons such as generalized-
potential field-based method [CTK00] and visible repulsive force-
based method [WML*03]. These methods can keep the skeleton
with centredness, but their computational complexity is often high,
and the resulting skeletonsmay not be sufficiently smooth. Recently,
Au et al. [ATC*08] employed Laplacian smooth functions to con-
tract an input mesh model to obtain its curve skeleton, which is ro-
bust and insensitive to noise. However, all the above methods are
generally designed to extract skeletons from 3D mesh models, and
they cannot be directly applied to unoriented point cloud models,
because most of them utilize the edges and normals of the input
mesh model.

Besides extracting skeletons from a single mesh model, some
other efforts have been focused on extracting skeletons (especially
animation skeletons) from mesh examples (or animated meshes).
For example, Kirk et al. [KOF05] extracted skeletons from marker-
based mocap data, utilizing the temporal coherence between mo-
cap frames. However, limited to marker motion capture data, this
method can only obtain the joint locations between two rigid body
parts and fail to handle the blending between bodies. After that,
a number of approaches have been developed to extract animation
skeletons [SY07, DATTS08, HTRS10, LD14] or bone transforma-
tions [JT05, KSO10, LD12] from a set of example poses.

Geometric methods for point cloud models. To extract the
skeletons from point cloud models, Cao et al. [CTO*10] extended
the Laplacian contraction–based skeleton extraction method from
mesh models to point cloud models. However, in order to construct
the adjacent relationship through the k-nearest neighbours (KNN)
and Laplacian matrix, the input point cloud model is required to
be sufficiently dense and noise-free. Both Bucksch et al. [BLM10]
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and Natali et al. [NBPF11] extended the Reeb graph reconstruction
to extract skeletons from point cloud models. Despite their certain
successes, the above methods still fall short of handling point cloud
models with noise or incomplete data.

Sharf et al. [SLSK07] proposed a skeleton extraction method
based on the evolution of a deformable model for both meshes and
point set objects. Livesu et al. [LGS12] proposed a curve skeleton
reconstruction method of 3D shapes based on the visual hull con-
cept. It can work equally well on polygonal meshes, voxel mod-
els and point clouds, and is robust against noises and missing data.
Moreover, they first proposed the approach including the perceptual
core extraction, branch collapsing and loops recovery, which has be-
come the common topological operation for the skeleton extraction
[TDS*16]. Li et al. [LLZM10] extracted the skeleton for slender
tubular shapes. Livny et al. [LYO*10] proposed an automatic ap-
proach to extract skeletons for tree structures, in particular, it can
handle trees with multiple overlapping, without segmentation. Bre-
mer et al. [BRW13] also presented a fully automated modular work-
flow to extract skeletons for tree structures. Jalba et al. [JKT13] ex-
tracted and regularized skeletons from point cloud models using a
newGPU-based geodesic tracing technique. The resulting skeletons
by the abovemethods are topology-preserving, but their qualities are
highly dependent on the input point cloud data.

Tagliasacchi et al. [TZCO09] proposed a ROSA method to ef-
fectively extract skeletons from incomplete point cloud models.
The main problem is that it assumes the shapes are cylindrical and
need accurate normal vectors of points, pre-filter noise and outliers.
Huang et al. [HWCO*13] presented an L1-medial skeleton algo-
rithm to extract and smooth the skeletons of point cloud models.
It can generate a feasible skeleton from incomplete missing data.
However, the resulting skeleton by this method may be poor when
the data are significantly missing or the initial set of sample mod-
els are insufficient to express the shape complexity. Song et al.
[SPJX18] proposed a distance field guided L1-median skeleton ex-
traction method from raw scanned point cloud data. In their method,
voxelization is the key operation that may influence the quality of
the resulting skeleton. Recently, Lu et al. [LCY*18] proposed an un-
supervised articulated skeleton extraction from point set sequences
captured by a single depth camera, which can guarantee the visual
quality and accuracy. Compared to the methods in [LCY*18] and
[SPJX18], our method does not need the process of non-rigid point
set registration and voxelization, which not only improves the per-
formance but also reduces the memory footprint.

3. The Preliminary of Our Method

Tagliasacchi et al. [TDS*16] surveyed the existing definitions and
properties of various types of 3D skeletons. There does not exist
a universal definition on curve skeletons. Some widely accepted
definitions of a curve skeleton are based on medial axis, centres
of maximally inscribed balls, L1-medial, etc. In this paper, we first
capture the cross-sectional planes that are perpendicular to the
skeleton along with pairs of antipodal points, and then use the set of
cross-section centroids to construct the curve skeleton of a 3D ob-
ject. The antipodal points include the feature point and its relevant
point, which are defined in Section 4. Note that although there are
infinite planes passing through the two points, we directly use the

Figure 1: Centroid approximation according to the two-force equi-
librium axiom.

Figure 2: A curve skeleton is composed of the cross-section cen-
troids.

two antipodal points to calculate the centroid of the cross-section
plane in order to avoid the construction of the cross-section plane.
This process can be implemented because we can use curvature and
distance field substitution to obtain hybrid feature points, and use
the normal optimization to locate the relevant point of each hybrid
feature point. Then the cross-section centroid is determined by the
midpoint of the feature point and its relevant point.

Given a thin and flat plate that occupies a 2D planar region D in
the xy-plane, we can approach the centroid of an object according
to the two-force equilibrium axiom [CFD*92]. Namely, if it is hung
twice from a string, then its centroid will be located at the intersec-
tion of the two extended lines, as illustrated in Figure 1.

Analogously, given amodel� ∈ R3 with boundary ∂�, we define
its curve skeleton S� as follows:

S� = {x ∈ CSPi|x = centroid(CSPi), i = 1, 2, . . .},

where CSPi is a cross-sectional plane, and centroid(CSPi) denotes
the centroid of a 2D planar region in CSPi. For example, in Fig-
ure 2, the magenta points are the centroids of the corresponding
cross-sections and the curve connecting these centroids is regarded
as the curve skeleton of the model.

For a 3D point cloud model, it is difficult to find the cross-
sections perpendicular to an unknown axis (i.e. the curve skeleton),
so directly applying the above skeleton definition to extract skele-
tons is technically infeasible. Instead, we propose an approxima-
tion method, where a cross-section is constructed based on feature
points and the extracted relevant points, and its centroid is deter-
mined through the feature point shifting.

Themain steps of our method are described as follows (illustrated
in Figure 3): (a)–(c) obtain hybrid feature points from a point cloud
model based on mean curvatures and distance field substitution; (d)
compute the relevant point of each feature point and set the shift-step
to obtain the centroids of cross-sections; (e) obtain skeleton points
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Figure 3: The pipeline of our skeleton extraction method. (a) Compute the distance field substitution, where the colour (r, g, b) is represented
by the distance field substitution (D1,D2,D3), Di is the normalized distance from this point to the ith benchmark plane of AABB, (b) compute
the mean curvatures map, visualized as a heat map, curvatures from small to large are represented by blue, red and yellow, respectively,
(c) compute feature points, (d) compute the approximation of centroid points, (e) extract the skeleton points, (f) construct the initial primary
adjacency list, (g) obtain the primary connected skeleton, (h) prune and trim the skeleton, (i) smooth the skeleton and (j) obtain the final
skeleton.

by tensor-based spectral clustering and region growing clustering;
(f)–(g) construct the initial primary adjacency list and iteratively add
edges to form a primary connected skeleton; (h)–(j) refine the pri-
mary skeleton by pruning, trimming and smoothing, and obtain the
final curve skeleton.

Note that the ROSAmethod [TZCO09] needs to determine skele-
ton points by computing local optimal cutting planes and the rele-
vant neighbourhood Ni according to a Mahalanobis distance–based
graph. In our method, the computation of skeleton points depends
on the computed relevant points that are obtained based on the po-
sitions of feature points and their normal directions. Therefore, our
method does not need to compute the optimal cutting planes and
relevant neighbourhood.

In our method, cross-sectional planes are auxiliary and our
method does not need to explicitly compute the cross-sectional
planes. Actually, after we determine the relevant point of a given
feature point, the skeletal point can then be obtained according to
the shifting of the feature point.

4. Initial Skeletal Points Construction

To obtain initial skeletal points, we perform a series of operations:
hybrid feature points construction, normal vectors estimation and

optimization and the computation of relevant facets and relevant
points, as detailed below.

4.1. Hybrid feature points construction

The feature points of a point cloud model are traditionally captured
by their geometric feature variances. As mean curvature (MC) can
capture the local geometry property on the surface, we compute the
mean curvatures [DHKL01] of all the points by computing the con-
volved covariance matrices of the Voronoi cells of the point cloud,
which has been provably robust in the presence of noise [MOG11].
The mean curvatures can be visualized by different colours shown
in Figure 4(a).

Another method for capturing feature points will make use of the
distance field. The straightforward way of computing the distance
field of a 3D model is to voxelize it and compute the minimal dis-
tance of each interior voxel to its boundary. The distance is normally
computed by the Euclidean metric, chess metric, block metric, etc.
The minimal distances of all the voxels together constitute the dis-
tance field. However, it is computationally expensive to compute a
high-resolution distance field, which limits its application for point
cloud models [SPJX18].

Different from previous methods, we introduce a novel distance
field substitutionmethod which is computed from each point inside
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Mean curvature map Distance from each point to

Distance from each point to Distance from each point to

(a)

(d)(c)

(b)

Figure 4: Colour-coded representations of (a) the mean curva-
tures and (b)–(d) distance field substitution of a 3D model. Cur-
vature from small to large is represented by blue, red and yellow,
respectively.

the shape to the three orthogonal facets of the minimum AABB of
the model [BHP01]. As this distance does not relate to the voxeliza-
tion of a point cloud and can be computed according to AABB, it
is easily implemented for point cloud models. For a given point, we
use this distance field substitution to capture more feature points,
besides geometric feature points captured by the MC. Our dis-
tance field substitution first constructs the AABB of the point cloud
model, and then chooses three facets that are orthogonal to each
other from the six facets of the AABB, as the benchmark planes
(denoted as πi, i = 1, 2, 3).

Specifically, for each point p of an input point cloud model, we
compute and normalize its distances to the benchmark planes, re-
spectively, as follows:

Di = distance(p, πi)

max
p∈Pointcloud

(distance(p, πi))
, i = 1, 2, 3. (1)

To this end, each point can be represented by a three-tuple
(D1,D2,D3), and we call these three-tuples as the distance field
substitution for the point cloud model. If (D1,D2,D3) is visualized
through the colour values of (r, g, b), respectively, we can generate
an intuitive heat-map representation of the distance field, as illus-
trated in Figures 4(b)–(d).

After computing the mean curvatures MC and the distance field
substitutionD, we can obtain the local extremes ofMC andD. These
corresponding points f Ps are called the hybrid feature points that re-
flect the topological and geometric features of the model [ZH04]. In
our work, considering the point cloudmodel is discrete, we compute
the local extremes of D andMC via the KNN algorithm. That is, for
a point P in a point cloud, if one of the three minimal distances to
the three benchmark planes is the minimum or maximum, or if the

Local min–max
curvature points (Blue
colour)

Local min–max
distance points (Red
colour)

Hybrid feature
points (The same
points with local min–
max curvature points
and distance points are
colored in yellow)

(a) (b) (c)

Figure 5: Hybrid feature point examples showing the min–max cur-
vature points andmin–max local distance points in different colours.

mean curvature of P is also the minimum or maximum among the
k neighbours of P, then this point P is regarded as a feature point.
We visualize hybrid feature point examples with separate subfigures
showing the local min–max curvature points and distance points in
different colours in Figure 5.

4.2. Normal vectors estimation and optimization

Our method also needs to estimate the normal vectors of hybrid fea-
ture points. Specifically, we first determine the neighbours of each
feature point using the KNN algorithm, estimate its normal through
principal component analysis (PCA) [HLDZ17] and finally adjust
all the normal directions of a point cloud model by employing the
minimum-spanning tree algorithm [PR02]. For each point P and its
neighbouring points in a point cloud model, we project these points
into a public tangent plane at P, and construct a graph using Delau-
nay triangulation, where the edges of each triangle form the graph
edges, and their weights are set as the lengths of the edges.

After the normal vector estimation for each feature point, we first
search for its relevant point according to the normal vector, and then
find the centroid of each cross-section containing the feature point
and its relevant point. For each feature point pi of a dense point cloud
model, we identify a set of points from the entire point cloud whose
normals are opposite to the normal of the feature point. Here, the
opposite normal is judged by a dot product with a threshold. After
that, among all the points in the identified point set, we further find
a particular point, rPi, such that the distance from rPi to the feature
point is minimal. In this work, we call rPi as the relevant point of
pi. Note that in some cases spurious relevant points may exist for a
given feature point, we just need to remove wrong relevant points
and determine one correct relevant point (refer to Section 4.3).

Considering the normal direction of a feature point has a great
impact on the position of the relevant point, and the normals of
the surrounding feature points also influences the normal estima-
tion of a given feature point, we introduce an optimization method
for the skeleton-guided normal vector estimation of each feature
point.

For the computed normal vector {N(pi)|i = 1, 2, . . . , n}, we con-
struct the following quadratic energy function to optimize and
obtain new normal vectors {N ′(pi)|i = 1, 2, . . . , n} for skeleton

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



6 H. Hu et al. / Curve Skeleton Extraction from 3D Points Clouds

Figure 6: Skeleton optimization based on normal direction opti-
mization.

extraction:

E =
n∑
i=1

(〈N ′(pi),N(pi)〉2 + λL(N ′(pi))2), (2)

where 〈N ′(pi),N(pi)〉 is the dot product between two normal vec-
tors N ′(pi) and N(pi), which prefers that the new normal vector is
close to the original normal vector; λ is a weight coefficient which
is used to control the degree of the normal adjustment of pi, and we
normally set λ in the range of [0, 2]; L(N ′(pi)) is added to adjust
the normal of pi according to its local normal variance. We can de-
scribe it as a generalized Laplacian form for the point cloud model,
namely,

L(N ′(pi)) =
∑
j∈Ii

s j
1

‖pj − pi‖ (N
′(pi) − N(pj )), (3)

where Ii is the KNN neighbourhood of pi, ‖pj − pi‖ is the dis-
tance between points pj and pi, s j = aj/(

∑
j∈Ii a j ) is the normalized

weight of each point in the neighbourhood, aj = 1∑
k∈I j

∠(N(pk ),N(p j ))
en-

sures that for a given point, when the normal variance in its neigh-
bourhood is small, s j is set as a large value otherwise a small value.
The above optimization process actually uses this weight setting to
let the normal of a feature point close to the normal of its local re-
gion as much as possible, which helps to more accurately capture
skeletal points.

To minimize the above quadratic energy function E (Equation 2),
we compute the partial derivatives of the E with respect to the
unknown variables N ′(pi), i = 1, 2, . . . , n, and make it equal to
zero, respectively. We thus obtain a system of linear equations with
respect to N ′(pi), i = 1, 2, . . . , n, which can be solved to obtain
the updated normal vectors {N ′(pi)|i = 1, 2, . . . , n} for each fea-
ture point.

We give an example to show the result using different normal di-
rections for skeleton extraction in Figure 6. For a point pi of a point
cloud model, point rPi is its relevant point according to the original
normal estimation on point pi. For the point pj, the normal vari-
ance in its neighbourhood is smaller compared to that of point pk,
so the optimized normal N ′(pi) will be closer to N(pj ) than N(pk ).
Through the above optimization process, rP′

i is the relevant point
by the improved normal estimation on point pi. We found the cen-
troid position (cP′

i ) between the feature point and its relevant point
is more reasonable than the original cPi for skeleton extraction.

Skeleton without the
normal optimization

Skeleton with the nor-
mal optimization

(a) (b)

Figure 7: The skeleton comparison with and without the normal
optimization for the ox model.

For some regions of a model with rich local geometric details,
our extracted skeleton can be improved by the above normal op-
timization. We show a comparison of the skeleton results with and
without the normal vector optimization in Figure 7. For the head and
ear parts of the ox model, the skeleton with the normal optimization
is more accurate than the result without the normal optimization.
In addition, the extracted skeleton with the normal optimization can
well keep the centredness property of the skeleton. For the body part
of the ox model, the skeleton with the normal optimization is closer
to the centre than the result without the normal optimization.

4.3. Computing relevant facets and relevant points

We determine the relevant point of a hybrid feature point through
the introduction of relevant facets. For a facet Sj of an AABB, we

denote its normal vector as
−−−→
N(Sj ), and for a feature point f Pi in-

side the bounding box, its normal vector is denoted as
−−−−→
N( f Pi). If the

angle between the two normal vectors
−−−→
N(Sj ) and

−−−−→
N( f Pi) is smaller

than π/2, we define the plane Sj is a relevant facet with respect to
the point f Pi, which is denoted as rF .

Proposition 1. Each feature point always has one, two or three
relevant facet(s). (Please refer to Appendix A for its detailed expla-
nation.)

Proposition 2. When searching for the relevant point of a feature
point, the method by judging the opposite normal direction may cre-
ate redundant spurious relevant points. But our method by judging
relevant facets can remove more spurious relevant points, and then
determine the accurate relevant point through the shortest distance.
(Please refer to Appendix B for its detailed explanation.)

Based on the concept of the above relevant facets, we can obtain
the relevant point of a feature point efficiently. For a given feature

point f Pi, assuming its normal vector is
−−−−→
N( f Pi) and its obtained rel-

evant facet is rFi, we define a point rPi in the model as the relevant
point of f Pi, if it satisfies all of the following conditions: (1) Its nor-

mal vector is opposite to
−−−−→
N( f Pi); (2) the distance from this point to

the relevant facets rFi is larger than the distance from f Pi to rFi; (3)
it is the closest point to f Pi among all the points satisfying both (1)
and (2).
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According to the above condition (1), we first search for all the
points (denoted as a set R) whose normal vectors are opposite to−−−−→
N( f Pi). However, certain exceptions still could occur: In the exam-
ple illustrated in Figure 8(c), the black point is a feature point f Pi,

but the green point whose normal is opposite to
−−−−→
N( f Pi) is not our de-

sired result. In order to eliminate such a case, we add the condition
(2) based on the distance from the point to its relevant facet, instead
of the distance from f Pi to the feature point. In this way, we can ob-
tain a subset sR ∈ R and finally select the closest point to f Pi from
sR according to the condition (3). Therefore, we can determine the
correct relevant point rPi (the red point in Figure 8c) for the feature
point f Pi. To enforce the above conditions, we solve a constrained
optimization problem and obtain the relevant point as follows:

rPi = argmin
P

‖P− f Pi‖,

s.t.
⎧⎨
⎩
cos∠(−−→N(P),

−−−−→
N( f Pi)) = −1

distance(P, rFj ) > distance( f Pi, rFj ), j = 1, 2, 3,
P ∈ Pointcloud,

where the point rPi is the relevant point for the feature point f Pi.

In our implementation, considering the complexity and non-
regularity of a point cloud model, it is difficult to find the point P

which exactly satisfies cos∠(−−→N(P),
−−−−→
N( f Pi)) = −1 for each feature

point f Pi, so we replace it by cos∠(
−−→
N(P),

−−−−→
N( f pi)) < θ , where θ is

a small threshold.

In addition, at narrow parts with a sharp corner such as the toe tip
(e.g. the blue point in Figure 8c), our method may fail to find the
relevant points for some feature points. In this case, if the distance
between the feature point and its relevant point is larger than a given
threshold, we do not compute the skeletal point for this feature point
and its relevant point. The threshold is set as the average distance
from all feature points to their relevant points in a local KNN neigh-
bourhood.

Finally, after determining the relevant point rPi for each feature
point f Pi, we compute the shifting step by stepi = 1/2‖ f Pi − rPi‖,

Figure 8: Computing the relevant points and normal vectors (b) of
a 3D shape (a) and (c). The black point is a feature point, the green
point is a spurious relevant point, the red point is our desired point
(relevant point) and the arrow line is its normal vector.

and then make f Pi to shift the step along the opposite direction of
its skeleton-guided normal vector to determine the approximated
centroid cPi.

5. Skeletal Points Construction

Often, the obtained centroid points (from the above step) are over-
dense to extract the skeleton of the 3D object, as shown in Fig-
ure 3(d). Therefore, we first cluster these points to groups using a
tensor-based spectral clustering. Then, we employ a region growing
clustering algorithm to iteratively reduce the centroid points in each
group. The retained points are used to determine the skeletal points
of the curve skeleton.

5.1. Tensor-based spectral clustering for centroid points

Over the years many clustering algorithms have been developed,
including K-means, hierarchical clustering, DBSCAN method, etc.
Compared to these methods, spectral clustering [BN03] has some
nice properties (e.g. clustering in fewer dimensions is more compu-
tationally efficient; the affinity matrix is constructed for preserving
the local features and topology of the model) and has been success-
fully used for a variety of applications. But in the conventional spec-
tral clustering method, the distance matrix for clustering is normally
constructed according to the distance property. Recently, Wu et al.
[WBG16] proposed a general tensor spectral co-clustering method
for high-order data and it can be used for partitioning higher-order
networks or complex structures [BGL15]. Ma et al. [MWF*10] pro-
posed an effective point cloud segmentation through spectral clus-
tering using both distance and normal direction. When clustering
the centroid points in this work, we found we can obtain more de-
sired clustering results if additional properties, such as the variance
of normals and the curvatures of the centroid points, are considered.

For the above reason, we propose a tensor-based spectral clus-
tering method by extending the existing matrix-based spectral clus-
ter algorithm. Namely, we not only use the distance property be-
tween centroid points, but also consider the variance of normals
and the curvature information as the reference to construct the fea-
ture tensor, and finally apply the tensor-based spectral clustering to
group centroid points. Themain steps of our clustering are described
below.

1. We first construct the affinity matrix Wt by Wt (i, j) =
e−metric(cPi,cPj )2/2σ 2

, where σ = 1/m2
∑m

i, j metric(cPi, cPj ), t =
1, 2, 3, and m is the number of points. For t = 1,
metric(cPi, cPj ) = ‖cPi − cPj‖ is the Euclidean distance.
When t = 2, metric(cPi, cPj ) = ∠(Ni,Nj ) is chosen as the
small angle difference of normals Ni and Nj at cPi and cPj, re-
spectively. When t = 3, metric(cPi, cPj ) = |curvature(cPi) −
curvature(cPj )|, which is set as the small curvature difference
between cPi and cPj. Note that the normal and curvature of
point cPi (or cPj) are inherited from its feature point or its
relevant point.

2. Normalize Wt to Lt = D− 1
2WtD− 1

2 , where D = diag
(d1, d2, . . . , dm), and di = ∑m

j=1W
t
i j.

3. Form a tensor T by L1, L2, L3, and unfold T into T (n) by mode-n
unfolding, n = 1, 2, 3.
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4. T (n), n = 1, 2, 3 are three different matrices and each one is
separately decomposed by the singular value decomposition
(SVD), the column vectors (called left singular vectors) of the
obtained unitary matrix are the principal components of the data
set T (n) [WRR03]. The singular values are λ

(n)
i and the cor-

responding left singular vectors are φ
(n)
i , i = 1, 2, . . . ,m. We

first normalize the singular values λ
(n)
i such that they are be-

tween 0 and 1, and then modify them by multiplying with the
weighted values ω(n), n = 1, 2, 3. When setting the weight val-
ues ω(n), n = 1, 2, 3, we assume the distance metric has more
influence than the variance of normal vectors and the curvature
for the singular values λ

(n)
i , so we normally set ω(1) to a value

in [0.6, 1], and ω(2), ω(3) are set to smaller values, which are in
[0, 0.4]. Finally, we sort the modified ω(n)λ

(n)
i (i = 1, 2, . . . ,m)

in a descending order and choose the top-rankedK singular vec-
tors to form the spectral space V = [φ1, φ2, . . . , φK] ∈ Rm×K .

5. Representing cPi by yi ∈ V , we cluster Y = {yi ∈ V |1 ≤ i ≤ m}
using the K-means clustering, and the corresponding centroid
points are then clustered.

In the traditional spectral clustering, the value of K (i.e. the number
of the clusters) is experimentally set by the user in advance. Here, K
is adaptively determined according to the matrix perturbation theory
[CLX*12] in our tensor-based spectral clustering, which reports that
the larger the eigengap is, the more stable the subspace formed by
the chosen eigenvectors is. Similarly, we suppose b(n)i = ω(n)λ

(n)
i −

ω(n)λ
(n)
i+1(i = 1, 2, . . . ,m− 1) is the difference of singular values, if

|b(n)i − b(n)i+1| is the first extreme maximum, then the subindex i is
chosen as the cluster number K.

Compared to traditional spectral clustering and other clustering
methods such as KNN algorithm, the above tensor-based spectral
clustering can help us obtain the curve skeleton with more correct
branches and guarantee the componentwise differentiation prop-
erty. Figure 9 shows an example to illustrate the effectiveness of
our tensor spectral clustering, where Figure 9(a) shows the result
by the traditional spectral clustering, Figure 9(b) shows the result
by the distance and normal direction [MWF*10] and Figure 9(c)
shows the result by our tensor-based spectral clustering. For the ox
model in Figure 9, although the spectral clustering with distance
and normal direction can segment four legs, the head region with
rich details is not effectively segmented, while there exists overseg-
mentation in the body part. In contrast, our method can obtain sat-
isfactory segmentation results. For example, there are three clusters

Traditional spectral
clustering with distance

Spectral clustering
with distance and nor-
mal [MWF∗10]

Our spectral clus-
tering with distance,
normal and curvature

(a) (b) (c)

Figure 9: Clustering comparison among different spectral cluster-
ing methods.

in the head of the ox model, four clusters in the leg regions and one
cluster in the body part of the ox model.

5.2. Region growing clustering for centroid points in the same
group

After the above tensor-based spectral clustering, some clusters
(groups) may have more than sufficient number of centroid points,
which could cause unnecessary redundancy for the curve skeleton.
We use the region growing clustering algorithm [MOG11] to reduce
the centroid points in each cluster. We first sort the centroid points in
each group G in a descending order (normally by the z-coordinate),
and then set the point with the maximum z-coordinate as the first
seed point. We search for its k nearest points to form the first sphere
region r1 by the KNN algorithm, and compute the centre C1 of r1.
k represents the number of different centroid points in each region
of a given group. It is an important parameter in this region grow-
ing clustering, which influences the density of skeletal points. In our
experiments, k is experimentally set to 8. Second, we look for the
furthest point in r1 fromC1 and choose it as the next seed point. We
search for the corresponding k nearest points excluding the previ-
ously processed points and form the second region r2, and so on.
Therefore, the group G will be divided into [‖G‖/k] regions and
the residual points are assigned to the closest regions, where ‖G‖
denotes the number of points in the set G, [x] is a rounding func-
tion that rounds the value of x to the nearest integer smaller than or
equal to x. Finally, we update the centreC of each region and use it
to represent the points within the corresponding region. We use sPi
to denote the centre of a region in the same group, then {sPi} forms
the skeletal point set sP and represents the resulting regions, which
are shown in Figure 3(e).

It is noteworthy that if ‖G‖ ≤ k, that is, the number of points in
G is fewer than or equal to k, it is not processed by the above region
growing clustering and each point in G will be retained as a skele-
tal point. In order to extract the desired curve skeleton, the above
process is iteratively called to reduce the skeletal points from the
overdense centroid points to a suitable number. We set the termina-
tion condition of the iterations as satisfying the condition that the
density D of points in G is below a threshold τ (in our experiments,
τ is set as 20).

Note that the coordinates of points in different point cloud mod-
els may have different values in scale. In order to ensure the density
condition is suitable for all 3D models, we use the following Equa-
tion (4) to regularize the volume of group G:

V =
4
3πr

3

vol(Box)
, (4)

where r is the radius of group G and vol(Box) is the volume of the
bounding box enclosing the point cloud model. Because the sphere
of group G and the AABB of the model have been constructed in
the above region growing clustering step and the distance field sub-
stitution, we can calculate this regularized volume easily. Then the
density of points inG is computed byD = ‖G‖/V , which describes
the number of points per unit volume.

In the above two-steps clustering, the first step is to divide the
approximated centroid points into different groups by the spectral

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



H. Hu et al. / Curve Skeleton Extraction from 3D Points Clouds 9

Skeleton without spec-
tral clustering

Skeleton with spectral
clustering

Result without
KNN clustering

Result with KNN
clustering

(a) (b) (c) (d)

Figure 10: The comparison with and without the spectral clustering for the spider model, and the comparison with and without the KNN
clustering for human model.

Figure 11: A connected component is merged with its closest com-
ponent by connecting the points m and n, where m is on Gi, and n is
on Gj.

Figure 12: The spurious branch pruning: the red edges are spuri-
ous branches.

clustering. Without this step, it could be difficult to keep the cor-
rect shape of the skeleton. We give examples in Figures 10(a) and
(b). The second step is to use the KNN clustering to reduce the cen-
troid points in the same group to represent the curve skeleton. With-
out this step, the skeleton may produce some trivial branch chains
because of the redundant centroid points. We show examples in
Figures 10(c) and (d). If instead ofKNN clustering, tensor clustering
was used again inside each group, it is hard to obtain the clustering
result and would cause the centroid points be less centred.

6. Constructing the Connected Skeletal Graph

After obtaining the skeletal points set sP, we employ the idea of
[LGS12] to perform skeletal graph connection, skeleton pruning,

Case (1) Case (2)(a) (b)

Figure 13: Junction points are trimmed.

Figure 14: Three cases of chains: the red chain in (a) is the case 1,
the blue chain is the case 2 and the chain in (b) is the case 3.

overjunctions merging, skeleton smoothing and loop closure. We
first construct the primary adjacency relationships among the skele-
tal points. For each skeletal point in sP, we search for its nearest
point and then connect them to obtain the initial primary adjacency
list E, shown in Figure 3(f), which is composed of connected com-
ponents G1,G2, . . . ,Gt .

Considering a given connected component Gi, we search for
its closest connected component Gj, and find the minimum Eu-
clidean distance between two points m ∈ Gi and n ∈ Gj, connect
them tomergeGi andGj into one connected component, as shown in
Figure 11. The edge (m, n) is added into the initial primary
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Figure 15: Curve skeletons extracted from shapes with various
genus. Note that in the leftmost (first) case, one blue point is the
endpoint of the chain, the other blue point is the closest endpoint
on this chain. Here, feature points are extracted according to dis-
tance field substitution. In the second case, two blue points and two
red points are similar endpoints. The numbers of points from four
models (from left to right) are 4800, 12 750, 24 013 and 5000, re-
spectively. The sampling densities (from left to right) are 17.8934,
28.7827, 29.3909, 19.9357, respectively.

Table 1: The default values of all the parameters in our algorithm.

Parameter k λ θ τ ω(1) ω(2) ω(3) α

Default value 8 1.2 −0.5 20 0.7 0.3 0.3 0.1

adjacency list E. We iteratively repeat this process until all the con-
nected components are merged into one connected component G,
which forms the primary skeletal graph, as shown in Figure 3(g).

6.1. Skeleton pruning

In the primary skeletal graph, there could exist spurious branches
whose edge lengths are small around the endpoint area of the skele-
ton graph. We detect spurious branches based on the lengths of the
edges with one endpoint. For example, considering an edge E(i, j)
shown in Figure 12(a), if node j is an endpoint whose degree is 1 and
the regularized distance of E(i, j) is smaller than a threshold α, then
this edge will be pruned. Here, the regularized distance is computed
as length(E(i, j))/max{distance(u, v)}, where u and v are two ar-
bitrary points in the skeleton, which guarantees that α is suitable for
other parts of 3D models. We also delete the edges according to the
length from the endpoint to the closest junction point. For example,
for the edges E(i, j) and E( j, h) shown in Figure 12(b), if node i is
a junction and node h is an endpoint, and the regularized distance
from i to h is smaller than a threshold α, then the edges E(i, j) and
E( j, h) are removed. The completely pruned skeleton graph as an
example is shown in Figure 3(h).

6.2. Overjunctions merging

In the primary skeletal graph, there could exist some overjunctions
due to redundant skeletal points. We merge some edges and points
related to junction points. For example, considering an edge E(i, j)
shown in Figure 13(a), if junctions J1 and J2 are directly adjacent, we
replace them by J whose coordinate is computed as J = (J1 + J2)/2.
For an intermediary pointM which is connected by junctions J1 and
J2, we replace J1, J2 and M by J whose coordinate is computed by
J = (J1 + J2 +M)/3, which is shown in Figure 13(b).

6.3. Curve skeleton smoothing

After the above steps, for a point cloud model with noise, some
skeletal points (in particular, those added skeletal points in the above
steps) may not be centred. Therefore, we need to adjust their posi-
tions to obtain a smooth curve skeleton. Inspired by the previous
work by Au et al. [ATC*08] that employs Laplacian contraction to
obtain a smooth curve skeleton for a mesh model, we use a point-
based Laplacian smoothing strategy [Tau95] to smooth a skeletal
point Vi in the curve skeleton, described below.

⎧⎨
⎩
V ′
1 = V1
V ′
i = 1

4Vi−1 + 1
2Vi + 1

4Vi+1, i = 2, 3, . . . ,N − 1
V ′
N = VN .

(5)

In the connected skeletal graph, we decompose it to some branch
chains using the Depth First Search (DFS) algorithm starting from
a junction point (if not existing, from the first endpoint). There
exist a total of three cases of chains as shown in Figure 14: (1)
Starting from a junction point and ending on an endpoint; (2)
starting from a junction and ending at another junction and (3)
if the curve skeleton is composed of only one chain (i.e. non-
existence of any junctions), starting from the first endpoint and end-
ing on the other endpoint. We smooth each chain according to the
above modified Laplacian formula and obtain the smoothed curve
skeleton.

Note that the above smoothing process may leave some original
skeletal points off-centred. During the above clustering and over-
junction merging steps, we only smooth those skeletal points with
the changed positions, and do not apply the smoothing steps to junc-
tion points connecting different groups (resulted from the spectral
clustering step). This can help us to keep the centredness of the curve
skeleton as much as possible.

6.4. Loop forming for models with non-zero genus

Given a model with non-zero genus, in order to extract its
topologically-equivalent curve skeleton, we need to add some edges
to form loops on the pruned and merged curve skeleton. For a point
cloud model with one genus, we form a loop according to the clos-
est distance between the endpoints of chains in the primary skele-
ton graph. For a point cloud model whose genus is greater than 1,
each endpoint of the chain is judged whether it is connected to other
endpoints of chains according to the distance. Experimentally, if the
distance between this pair of endpoints is not larger than twice of the
average edge length in its KNN neighbourhood, we connect them to
form the skeleton with loops.

Figure 15 shows the results of several point cloud models with
non-zero genus by our method. In this figure, the first is a point
cloud model with one genus, and its curve skeleton is extracted cor-
rectly. While others include complex shapes with high genus, and
our method can also extract their reasonable curve skeletons. For
a fertility model shown in Figure 15, we provided corresponding
results of different steps in Figure 16. Besides, we use another ox
model to show the results of different steps during our skeleton ex-
traction in Figure 17.
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Overly dense skele-
ton points

Initial skeleton Skeleton after prun-
ing

Skeleton after merg-
ing of branching nodes

Skeleton after more
aggressive smoothing

Skeleton after topo-
logical fixing (for genus
> 0)

(a) (b) (c) (d) (e) (f)

Figure 16: Results of different steps for the fertility model (some variances are shown in the red rectangles).

Overly dense skele-
ton points

Initial skeleton Skeleton after prun-
ing

Skeleton after merg-
ing of branching nodes

Skeleton after pro-
gressively more aggres-
sive smoothing

Curve skeleton after
removing skeleton point

(a) (b) (c) (d) (e) (f)

Figure 17: Results of different steps for the ox model.

Table 2: Skeleton extraction time comparison of the Laplacian mesh contraction [ATC*08] and our method for the three models in Figure 23.

Models Point number Feature points number
Skeleton points

number
Laplacian Mesh contraction

[ATC*08] time (s)
Our method
time (s)

Dinosaur 23 984 922 89 16.32 15.38
Bunny 5000 362 49 2.86 1.97
Hand 1557 515 84 1.12 1.65

Table 3: Skeleton extraction time comparison of the L1-medial method [HWCO*13] and our method for the models in Figure 21.

Models Point number Feature points number Skeleton points number L1-medial time (s) Our method time (s)

Woman 44 230 425 71 16.90 7.95
Rhino 79 934 1590 68 210.86 85.86

7. Experimental Results and Discussion

We tested our skeleton extraction algorithm on a variety of
point cloud models, including noisy models (the second model in
Figure 15 and the last two models in Figure 18), models with
holes (the last four models in Figure 18), models with high genus
(Figure 15) and other models in Figure 18. We also analysed vari-
ous properties of the extracted curve skeletons, including correct-
ness, centredness, homotopic and componentwise differentiation,
efficiency, reliability and robustness and invariant under different
poses or deformations. Finally, we compared our algorithm with
state-of-the-art curve skeleton extraction methods.

Table 1 lists the default values of the parameters in our approach.
Note that although we extracted the curve skeletons directly from
input point cloud models, for a more intuitive visualization, we ren-

dered the models with their corresponding mesh representations
in a transparent colour, and showed their final skeletons in blue.
For all the tested models, we referred to the local density of each
point as in the L1-medial method [HWCO*13], and computed the
average of the local densities of all the points as the sampling
density.

7.1. Discussion

Correctness and centredness properties: For a densely sam-
pled point cloud model, our method captures hybrid feature points
through geometric features and distance field substitution, per-
forms the skeleton-guided normal vector optimization, tensor-based
spectral clustering and removes spurious relevant points. These
steps help us to obtain the correct curve skeleton. Also, we smooth
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Point Number: 18 114 8431 8431 5000

5342 5000 5000 5000

1450 1494 1497 5000

5000 8431 1681 1508

5000 3458 7138 1497

1507 1508 1509 1508

Figure 18: The extracted skeletons by our method. The numbers of points from all the models vary from 2K to 20K. The average of the
sampling densities for all the models is 48.1941.

those skeletal points whose positions are changed in the clustering
and merging processes, so we can keep the resulting curve skele-
ton centred as much as possible. We provide the quantitative analy-
sis about the centredness of the resulting skeletons in the following
comparisons section.

The noise or missing data of an input point cloud model in-
fluences the quality of the resulting skeletons by our method, for
example, the skeleton is sometimes off-centred or out of the shape.
When noise or the amount of the missing data is not significant,
more hybrid feature points and other mentioned measurements in
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Man model with
noise

Curve skeletons(a) (b)

Figure 19: Skeletons extracted from a man model with noise (a). In
(b), the red skeleton is extracted from the model without noise. The
blue skeleton is extracted from the model with noise. The number of
points is 15 000, and the sampling density is 60.0636.

A kangaroo model Raw scan Curve skeleton(b) (c)(a)

Figure 20: The skeleton (c) of a kangaroo model. (a) is the mesh
model and (b) is the corresponding point cloud model. The number
of points is 9673, and the sampling density is 45.8795.

our method help to keep the correctness and centredness of the re-
sulting skeleton. For a man model with noise in Figure 19 and other
models with missing data in Figure 21, we can see the extracted
curve skeletons correctly keep the shapes of the models.

Homotopic and componentwise differentiation: Since in our
method each skeletal point is extracted as the average of its local
feature point and relevant point, it can represent the local shape of
the input point cloud model. So, the resulting curve skeleton can
preserve the topology of the input model. Meanwhile, we use the
tensor-based spectral clustering for these skeletal points, so that
the clustered skeletal points can reflect the details of the shape. As
shown in Figure 20, the skeleton captures the correct topological re-
lationship (such as limbs and connections) between different body
parts, even though different parts of the model have significant dif-
ferences in terms of size and shape.

Computational efficiency: The configuration of our experimen-
tal computer was an Intel core i7-4710MQ cpu@2.50 GHz with
8 GB RAM. In order to test the computational efficiency of our
method, we compared the skeleton extraction time of the Lapla-
cian mesh contraction [ATC*08] with that of our method for the
three models in Figure 23, listed in Table 2. We cannot find signifi-
cant difference between our method for a point cloud model and the
Laplacian mesh contraction [ATC*08] for its corresponding mesh
model. We also compared our method with the L1-medial method

Woman Raw scan Another view Skeleton

Rhino Raw scan Another view Skeleton

Figure 21: Example curve skeletons extracted from incomplete
point cloud models. The number of points on the woman model is
21 097, and its sampling density is 102.1090. The number of points
on the rhino model is 79 934, and its sampling density is 66.4723.

Figure 22: Invariance under different poses or deformations. The
number of points is 15 000, and the sampling density is 58.9850.

[HWCO*13] for two point cloud models in Figure 21, listed in Ta-
ble 3. In the original works of [SPJX18, HWCO*13], the authors
reported that the L1-medial method [HWCO*13] is faster than the
ROSA method [TZCO09] and the distance field guided L1-median
method [SPJX18], while our method is significantly faster than the
L1-medial method [HWCO*13] (refer to Table 3). For the complex-
ity of the algorithm, although we add the normal optimization and
the tensor-based spectral clustering, the computational efficiency of
our skeleton extraction method is higher than the L1-medial method
because our method does not need iterations to obtain the approxi-
mated centroid points. Note that the running times in Tables 2 and
3 were not reported on the optimized code for all the methods in-
cluding the L1-medial method, the ROSAmethod and our approach.
If the code is further optimized, the running times for all the three
methods would be reduced. Note that computational scalability is
not the main goal of our method, and we are aware that some exist-
ing methods can achieve a better scalability (e.g. [JKT13]).

Generality and robustness: In order to verify the generality
and robustness of our skeleton extraction method, we tested it on
some point cloud models with incomplete data and models with
significant missing regions, as shown in Figure 21 (also refer to
Figures 25–28), the first column shows the origin models, and the
second and third columns show the raw scans with different views
(the black regions are caused by significant missing data), the ex-
tracted curve skeletons, shown in the fourth column, are clean and
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ROSA method

L1-medial
method

Distance field
guided
L1-medial

method

Our new
method

Figure 23: Comparisons between our method and three state-of-the-art skeleton extraction methods. The number of points on the dinosaur
model is 23 984, and its sampling density is 59.5170. The number of points on the bunny model is 5000, and its sampling density is 28.8505.
The number of points on the hand model is 1557, and its sampling density is 25.3355. The number of points on the woman model is 21 097,
and its sampling density is 102.1090. The number of points on the rhino model is 79 934, and its sampling density is 66.4723.

correct. Note that the missing data still have influence on the re-
sulting skeleton. For example, for the woman model in Figure 21,
the skeleton cannot locally express the breasts due to the missing
data in the breast regions. For the rhino model, the skeleton cannot
locally express small ears because of the missing data in that area.
Besides, themissing data also cause some parts of the curve skeleton
off-centred.

For a point cloud model with significant missing data, we extract
feature points by not only geometric feature but also distance field
substitution. As long as the missing data on the cross-sectional con-
tour is fewer than 50%, our method can typically find the corre-
sponding relevant points for feature points. So, we can determine
the corresponding skeletal points and form the curve skeleton for
the input model.
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(a) (b) (c)L1-medial Distance field guided
L1-median

Our method

Figure 24: Comparisons among the three methods (L1-medial
[HWCO*13], Distance field guided L1-median [SPJX18], our
method) for a dog model. The number of points is 18 114, and the
sampling density is 102.1069. Note that the results by the L1-medial
method and the distance field guided L1-median method are taken
from the original papers.

The noise on a point cloud model could cause the resulting
skeletal point positions off-centred, in particular, during the fea-
ture extraction and relevant point determination steps in our al-
gorithm. However, this issue can be to a certain extent fixed or
at least alleviated through the skeleton refinement step in our
algorithm.

Invariance under different poses or deformations: Our skele-
ton extraction approach is invariant under different poses or defor-
mations for input point cloud models, which is achieved by our
skeleton-guided normal vector estimation and feature points shift-
ing steps. As shown in Figure 22, for the three different poses
of a human model, their curve skeletons are extracted correctly
and topologically-equivalent.

In addition, other properties such as smoothness and thinness can
be achieved by our skeleton smoothing, point cloud simplification
and feature points shifting processes. Our skeletons extracted by our
approach satisfy most of the properties proposed by Cornea et al.
[CSM07].

7.2. Comparisons

We compared our results with three state-of-the-art skeleton ex-
traction algorithms: the ROSA method [TZCO09], the L1-medial
method [HWCO*13] and the distance field guided L1-median
method [SPJX18], for point cloud models without missing data.
The comparison results for five test models are shown in Figure 23.
All these skeleton extraction methods can reasonably preserve the
topologies of the models. Their difference is that, for the dinosaur
model, the curve skeleton by our method has better connections be-
tween the tail and the body compared to the other three methods;
for the bunny model, the head part of the curve skeleton by our
method is more approximate to the shape than the other three meth-
ods and for the hand model, the curve skeleton by our method does
not have spurious branches, and is more closer to the centre and
better represents the shape of the object. For the woman model, the
curve skeleton by our method has correct connections and branches;
for the rhino model, the curve skeleton by our method has better
centredness and no spurious branches than the other three methods.

Note that the centredness of the skeleton is important for many prac-
tical applications. Our method also cannot always satisfy this prop-
erty. For example, for the bunny and hand models in Figure 23, all
the methods cannot produce perfectly centred skeletons.

We also compared our approach with the three chosen methods
for models with incomplete and significant missing data. As shown
in Figure 24, compared to the L1-medial method [HWCO*13]
and the distance field guided L1-median method [SPJX18], we
found the skeletons by our method had more details in the head
of the dog model (i.e. two ears are represented by two skeletal
branches). The results of an incomplete lady model with complex
shapes are presented in Figure 25. We can see that the skeleton
by our method is better than both the ROSA method and the
L1-medial skeleton method, since some errors exist in the blue-box
regions, by contrast, the skeleton by our method does not have such
errors.

For an incomplete dinosaur model in Figure 26, we found that
the curve skeleton by our method is as good as that by the L1-medial
method. But when the missing data are increased on a human model
as shown in Figure 27, we found our method can still keep the prop-
erty of the skeleton while the L1-medial method gradually extracts
spurious branches and wrong parts of the skeleton. We also tested
the results when we removed points with 10%, 20% and 30%, re-
spectively, in a uniform way from the original human model. We
found our method can still extract satisfactory skeleton results, as
shown in Figure 28. For amodel with complex shape and largemiss-
ing regions, our method can achieve more satisfactory skeleton re-
sults than existing methods mainly because it uses hybrid feature
points not only from geometric information but also from the dis-
tance field substitution for skeleton construction.

We also designed a quantitative criterion for the centredness eval-
uation of the curve skeleton [Cor07]. First, the curve skeleton is uni-
formly sampled. For each sample point Om, a plane perpendicular
to its skeletal direction is constructed. The skeletal direction at the
sample point Om can be calculated through the neighbouring sam-
ple points of Om. Then, the intersection points with the point cloud
model are found by uniformly emitting rays from Om in this plane,
and the distance between each intersection pointCi andOm is calcu-
lated. We employ a tolerance to determine whether a point Pj in the
point cloud model is in the plane perpendicular to the curve skele-
ton at the sample point Oj. If the angle ϕ between the line PjOj

and the plane is smaller than a threshold (10◦ in our experiments),
Pj is considered in the plane for the intersection computation. For
each point Ci in the intersection set, if another point Cj is found
in the intersection set to satisfy that Ci, Om and Cj are almost on a
straight line, the shorter and longer distances in |CiOm| and |CjOm|
can be set as lmin and lmax, respectively, then LCi = lmin/lmax is
recorded as the centredness degree about the point Ci. The average
value of all LCi is calculated as the centredness degree of the skele-
ton point Om. Finally, the average value of the centredness degree
of all skeleton sampling points is defined as the centredness degree
of this skeleton. Therefore, the larger the calculated centredness de-
gree, the more centred the skeleton. Note that if pointOi is a skeletal
junction point, we compute the centredness degree of its neighbour-
ing skeletal point in each skeletal branch, respectively, and then take
the average of the centredness degrees in all skeletal branches as the
centredness degree at the junction point (see Figure 29).
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A lady model Raw scan Another view ROSA method L1-medial method Our method

Figure 25: Comparisons among the three methods (ROSA [TZCO09], L1-medial [HWCO*13] and our method) for an incomplete lady model.
The number of points is 41 238, and the sampling density is 138.6774. Note that the results by the L1-medial method and the ROSA method
are taken from the original papers.

A dinosaur model Raw scan Another view L1-medial method Our method

Figure 26: Comparison between the L1-medial [HWCO*13] method and our method for an incomplete dinosaur model. The number of points
is 57 210, and the sampling density is 114.1270. Note that the result by the L1-medial method is taken from the original paper.

Table 4: The centredness results of the five models in Figure 23.

Dinosaur Bunny Hand Woman Rhino

ROSA method 0.766808332 0.803718848 0.906167574 0.792531224 0.745892033
L1-medial method 0.772488796 0.808567351 0.921160137 0.803814563 0.739299560
Distance field guided L1-medial method 0.774012757 0.830179174 0.915827802 0.791945545 0.720106851
Our method 0.836542762 0.840244916 0.925785687 0.824963467 0.771208026

Table 5: The centredness of the human model shown in Figure 27 with different missing data.

Original model Model with points: 13 377 Model with points: 11 992 Model with points: 8849.
with points: 15 000 Missing data: 10.82% Missing data: 20.05% Missing data: 41.01%

L1-medial method 0.837643214 0.755438790 0.742154331 0.703428233
Our method 0.849560674 0.858944282 0.843579911 0.832942352

Taking a cylinder model as the ground truth, we compared the
curve skeleton and the centredness degree between our method and
state-of-the-art methods in Figure 30. We reported the calculated
centredness results in Table 4 and showed the advantage of our
method by comparing it with different algorithms for five models in
Figure 23. Besides, we provided the centredness values in Table 5

for the humanmodel shown in Figure 27with different missing data.
We found that our obtained skeleton is optimally centred with re-
spect to the original model, compared to the skeletons extracted by
the other methods. For the original human model and model with
Gaussian noise (σ = 0.003) as shown in Figure 19, we also gave
the centredness result with 0.851510321 and 0.831485361, which
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Original model with
points: 15000

Model with points:
13377. Missing data:

10.82%

Model with points:
11992. Missing data:

20.05%

Model with points:
8849. Missing data:

41.01%
Human model

Skeleton by
L1-medial

method
[HWCO∗13]

Skeleton by our
method

Figure 27: Comparison between the L1-medial method and our method for a human model with different missing data. Here, the number of
points from original model is 15 000, the sampling density is 63.3401.

indicates that the centredness of our extracted skeleton is less influ-
enced by noise.

7.3. Limitations

Our current method is suitable for dense point cloud models and
has some limitations. The skeletonization from point clouds, espe-
cially from raw data with significantly missing regions, is an ill-
posed problem by nature. Our method cannot completely solve this
open problem. In particular, how to eliminate or bound the viola-
tion of the centredness of the skeleton and preserve the topology
is still an unresolved challenge for practical applications. Our work
provides an effective alternative for skeleton extraction and can ob-
tain relatively satisfactory skeletons, compared to some existing
methods.

Generally, if the missing data as a patch on the contour of a cross-
section is large than a half of data on that contour, the relevant point
of a given feature point will probably not be found according to the
opposite normal from the feature point, our method cannot guaran-
tee the correctness of its corresponding skeletal point. For exam-
ple, for the human model shown in Figure 27, if the missing data
are more than 50%, our method also cannot generate a reasonable
curve skeleton.

Another limitation of our current method is that it is not applica-
ble for flat and thin models due to the shape of the cross-sections or
a low sampling resolution. For such models, some relevant points
could be misidentified during the relevant point determination step
according to the opposite normal from the feature point in our al-
gorithm, which could lead to incorrect skeletons at the end. For ex-
ample, there are some spurious skeletal branches in the wing part
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Original model
with 15,000 points

Model with 10%
points removed uni-
formly

Model with 20%
points removed uni-
formly

Model with 30%
points removed uni-
formly

(a) (b) (c) (d)

Figure 28: Skeleton results for the human model with different percentage of missing data.

Figure 29: Centredness degree computation at the skeletal junction
point, and the intersection between the plane perpendicular to the
skeletal direction and the point cloud model.

of a bird model, shown in Figure 31. For such models, we need to
combine our method with interactive user operations to solve the
problem.

8. Conclusion and Future Work

In this paper, we present a novel hybrid feature point-based ap-
proach to extract curve skeletons for point cloud models. This is
achieved through a series of operations: identify hybrid feature
points by combining geometry features and distance field substitu-
tion, shift the hybrid feature points according to the skeleton-guided
normal directions and the relevant points to locate the centres of
an input model and then simplify them by the tensor-based spec-
tral clustering to determine skeletal points, construct the connected
curve skeleton and finally prune, trim and smooth it to generate
the final skeleton. Through many experiments and comparisons, we
show that ourmethod is robust and can efficiently handle point cloud
models with noise and significant missing data.

Based on the extracted skeletons from point cloud models, many
tasks in digital geometry processing can be further explored. For ex-
ample, the extracted skeletons can be potentially used for geodesic
computation, incomplete surface repair, model mapping, shape
analysis, etc, which will be our future work.
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Appendix A

Proposition 1. Each feature point always has one, two or three rel-
evant facet(s).

Explanation. For a given bounding box and a feature point in
this box, there are three cases for the relevant facet. If the normal
vector of a feature point is coincident with the normal of one facet
of the box, then this facet is the only relevant facet. If the normal
vector of a feature point is parallel with two normal-opposite facets
of the box, then there are two relevant facets. If the normal vector
of a feature point is not parallel with any facet of the box, then there
are three facets as the relevant facets corresponding to the feature
point. Figure A1 shows three cases of the relevant facets.

Now let us further assume the number of the relevant facets is
more than three for a given feature point, there must be two relevant
facets in the six facets of a box whose normal directions are oppo-
site, so we observe that the sum of the two angles between the nor-
mal of a given feature point and the normals of two relevant facets is
π . According to the definition of relevant facets, the angle between
the normal of a feature point and the normal of any relevant facet is
smaller than π/2, this causes a contradiction to the above observa-
tion. Therefore, each feature point has at most three relevant facets.

Appendix B

Proposition 2. When searching for the relevant point of a feature
point, the method by judging the opposite normal direction may cre-
ate redundant spurious relevant points. But our method by judging
relevant facets can remove more spurious relevant points, and then
determine the accurate relevant point through the shortest distance.

Explanation. We consider three cases according to the number
of relevant facets.
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Method ROSA method L1-medial method distance field guided
L1-medial method

Our method

Model and
skeleton

Centeredness 0.980422325 0.979861725 0.979247365 0.985610647

Figure 30: Comparisons between our method and state-of-the-art methods for a ground truth example (i.e. a cylinder model). The number of
points is 5043, and the sampling density is 16.2223.

Figure 31: Skeleton extraction from a bird model. The number of
points is 6188, and the sampling density is 48.5677.

Case (1): The feature point f has only one relevant facet (for ex-
ample, the left facet of the bounding box is assumed to be the rele-
vant facet). For convenience, the relevant feature and relevant facet
are shown from the top view of the bounding box, which are illus-
trated in Figure A2(a). The bounding box is then divided into two
parts s1 and s2 by the plane β crossing the feature point f and par-
allel to the direction of the relevant facet.

It is obvious that the spurious relevant points of p2 and p3 in s1
will be found by the judgement only according to the opposite nor-
mal direction. While in our method, the spurious p2 and p3 in the
left part s1 can be eliminated if the distance from the relevant point
to the relevant facet is smaller than the distance between the fea-
ture point and the relevant facet. And the relevant point p1 in the
right part s2 can be found by the opposite normal direction and the
shortest distance.

Case (2): The feature point f has two relevant facets (for example,
the left and front facets of the bounding box are assumed to be the
relevant facets). For convenience, relevant feature and relevant facet
are shown from the top view of the bounding box, which are illus-
trated in Figure A2(b). The bounding box is then divided into four
parts s1, s2, s3 and s4 by the planes β1 and β2 crossing the feature
point f and parallel to each relevant facet.

Intuitively, the spurious relevant points p2 and p3 will be found
by the judgement only according to the opposite normal direction.

Figure A1: Three cases of the relevant facets, the red point and red
arrow are a feature point and its normal vector, the blue arrow is
the normal vector of a relevant facet.

Figure A2: The positions relation between the feature point, rele-
vant points and relevant facets.

In our method, the spurious p2 in s4, p3 in s2 and other spurious rel-
evant points in s3 can be eliminated if the distance from the relevant
point to the relevant facets is smaller than the distance between the
feature point and the relevant facets. And, the relevant point p1 in s3
can be found by the opposite normal direction and the shortest dis-
tance.

Case (3): The feature point f has three relevant facets (for ex-
ample, the upper, front and right facets of the bounding box are
assumed to be the relevant facets, which are illustrated in Fig-
ure A2(c). At the feature point f , The bounding box is then divided
into eight octants 1–8 by the planes β1, β2, β3, crossing the feature
point f and parallel to each relevant facet.
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Assuming the normal direction of the feature point f is located
in the first octant 1, it is obvious that those spurious relevant points
located in the 1–6 or 8 octants can be eliminated according to the
rule that the distance from the relevant point to the relevant facets are
smaller than the distance between the feature point and the relevant
facets. Only one relevant point in the octant 7 can be found by the
opposite normal direction and the shortest distance.
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