
Contour-based 3D Modeling through Joint Embedding of
Shapes and Contours

Aobo Jin
University of Houston, USA

ajin4@uh.edu

Qiang Fu+
Beijing University of Post and

Communications, China

Zhigang Deng
University of Houston, USA

zdeng4@uh.edu

Figure 1: Gallery of modeling results. With a sketch contour input (top), our method can automatically generate its corre-
sponding 3D model with voxel representation (middle) and then convert and refine it to its 3D mesh representation (bottom).

ABSTRACT
In this paper, we propose a novel space that jointly embeds both
2D occluding contours and 3D shapes via a variational autoencoder
(VAE) and a volumetric autoencoder. Given a dataset of 3D shapes,
we extract their occluding contours via projections from random
views and use the occluding contours to train the VAE. Then, the
obtained continuous embedding space, where each point is a la-
tent vector that represents an occluding contour, can be used to
measure the similarity between occluding contours. After that, the
volumetric autoencoder is trained to first map 3D shapes onto the
embedding space through a supervised learning process and then
decode the merged latent vectors of three occluding contours (from
three different views) of a 3D shape to its 3D voxel representation.
We conduct various experiments and comparisons to demonstrate
the usefulness and effectiveness of our method for sketch-based 3D
modeling and shape manipulation applications.

+Most of Qiang Fu’s involvement on this work was done while he worked at University
of Houston as a PostDoc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
I3D ’20, May 5–7, 2020, San Francisco, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7589-4/20/05. . . $15.00
https://doi.org/10.1145/3384382.3384518

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
deep learning, geometry modeling, sketch-based modeling

ACM Reference Format:
Aobo Jin, Qiang Fu+, and Zhigang Deng. 2020. Contour-based 3D Modeling
through Joint Embedding of Shapes and Contours. In Symposium on Interac-
tive 3D Graphics and Games (I3D ’20), May 5–7, 2020, San Francisco, CA, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3384382.3384518

1 INTRODUCTION
As an intuitive method of creating 3D models, sketch-based mod-
eling has been widely studied during the past several decades. A
variety of methods and systems have been developed to explore
multiple conceptual options, without finalizing geometric details in
the early design stage [Bae et al. 2008; Kara and Shimada 2007, 2008;
Shao et al. 2013]. However, since at the early stage modelers may
lack a clear mental image on the target shape, current methods that
typically require user sketches with abundant lines, might deceler-
ate the modeling effectiveness. For example, to model a 3D shape
from a single view sketch, besides simple occluding contours, the
modelers need to have extra information, such as supportive lines
[Li et al. 2017] or lines extracted from images [Chen et al. 2013] to
provide 3D surface curvature information and other details. There-
fore, efficient shape generation solely based on simple occluding
contours is still considered a wide open problem to date.

https://doi.org/10.1145/3384382.3384518
https://doi.org/10.1145/3384382.3384518

I3D ’20, May 5–7, 2020, San Francisco, CA, USA A. Jin, Q. Fu, Z. Deng

Inspired by the above problem, we present a new method by
jointly embedding 2D occluding contours and 3D shapes into a
space via a variational autoencoder (VAE) and a volumetric au-
toencoder. In the space, the similarities of both 3D shapes and 2D
occluding contours can be measured by the distances of their cor-
responding latent vector representations. Specifically, we extract
multiple occluding contours from a number of views for each 3D
object in a 3D shape dataset by employing a well-known, non-
photorealistic rendering algorithm [DeCarlo et al. 2003]. These
occluding contours are then used as the training data to train a vari-
ational autoencoder, which can map an occluding contour to a point
in the embedding space. The coordinates of each point are a latent
vector that not only can measure the similarity of the occluding
contours but also can be decoded to the original occluding contour
representation. Moreover, when the viewpoint of a 3D shape are
determined, the 3D shape also has its coordinates in the embedding
space, based on its projected occluding contour.

We then consider the problem of mapping the geometry of 3D
shapes to this embedding space. In other words, we expect the latent
vectors in the embedding space can also represent 3D geometry,
and can even be decoded to recover corresponding 3Dmodels. Since
the occluding contours of a 3D shape from three orthogonal views
(i.e., front, top, and side views) can typically capture its geometry,
we expect the vector encoded by the volumetric autoencoder could
consist of the latent vectors of the three occluding contours of the
3D shape. To this end, we employ a supervised learning framework
to train a volumetric autoencoder for the voxel representation of
3D shapes. Therefore, in the embedding space, for any group of
latent vectors that respectively represent the occluding contours
of the three different, orthogonal views of a 3D shape, we can
concatenate them into a new vector and further decode it to the
voxel representation of the underlying 3D shape. As shown in
Figure 2, once we update an occluding contour to a new one by
changing the associated fragment(s) in the vector, a new 3D shape
with the new occluding contour can be generated through the
volumetric autoencoder. This is mainly because the contours from
the other two views provide some additional information to assist
the changed contour to form its 3D shape.

Based on the proposed embedding space, we demonstrate its
selected applications on 3D modeling and shape manipulation. In
the 3D modeling application, given a 2D occluding contour drawn
manually or extracted from an image, the trained VAE is first used
to encode it to a latent vector in the embedding space. We then
search for its neighbors in the embedding space that represent the
occluding contours with similar shapes. Since these neighbors are
actually generated from 3D shapes, we can also find the other two
orthogonal contour views of the neighbors as the missing contour
views to supplement the input single occluding contour. To this
end, just like sketch-based modeling, our method can generate
a 3D shape with the vector consists of the three latent vectors
that correspond to the input occluding contour and the other two
supplemented contours. In the shape manipulation application,
given a 3D model, we can perform shape manipulations on it using
the similar occluding contours in the embedding space to replace
certain contour views of the given model to generate 3D shape
variations. The manipulation is only focused on the outline of a
3D shape instead of its surface details. Finally, we demonstrate

the effectiveness of our method through various experiments and
comparisons with the state-of-the-art, sketch-based 3D modeling
methods [Li et al. 2018; Xie et al. 2013]. Figure 1 shows some results
generated by our method.

In sum, ourmethodmakes the following twomajor contributions:
1) a new framework to form an embedding space of 3D shapes and
2D occluding contours via a variational autoencoder and a volumet-
ric autoencoder; and 2) two selected applications of the embedding
space for sketch-based 3D modeling and shape manipulations.

2 RELATEDWORK
In this section we give a categorized review of the recent related
literature, including the joint embedding of shapes and images,
sketch-based 3D modeling, and learning-based shape synthesis,
especially deep neural network based methods. Readers are referred
to [Cook and Agah 2009; Ding and Liu 2016; Kazmi et al. 2014; Olsen
et al. 2009] for comprehensive surveys on sketch-based modeling.

Joint embedding spaces. Joint embedding methods have been
employed for classification and retrieval tasks. To retrieve 3D shapes
by 2D images or retrieve 2D images by 3D shapes, Li et al. [2015]
proposed a joint embedding space for images and 3D shapes, which
can bridge the gap between 3D shapes and images. Instead of link-
ing 2D and 3D spaces, Tasse et al. [2016] build semantic-based
descriptors for 3D shapes, sketches, and images by embedding 3D
shapes, sketches, and images into a word vector space to handle di-
verse retrieval tasks. It is difficult to directly extend their method for
our work, since we need a continuous embedding space to handle
shape generation and manipulation tasks. Embedding spaces can
also be utilized to analyze arrangements and shapes of parts across
models [Averkiou et al. 2014]. To easily present high-dimensional
shapes in a low-dimensional space, embedding spaces have also
been widely investigated for the shape modeling of both human
bodies [Anguelov et al. 2005; Loper et al. 2015] and faces [Blanz
et al. 1999]. In our work, the embedding space is constructed by the
latent vectors of 2D contours. Then, we further learn a volumetric
autoencoder to project 3D shapes onto the embedding space. This
process is similar to the work of [Li et al. 2015], where a space with
3D shapes and their mapped 2D images is constructed. Therefore,
we borrow the term of “joint embedding space" for our method.

Sketch-based modeling. Hand-drawn sketches, as an intuitive
input, have been widely utilized for interactive 3D modeling [Fu
et al. 2016; Gingold et al. 2009; Huang et al. 2017; Xie et al. 2013;
Zeleznik et al. 2007]. Some existing methods [Igarashi et al. 2007;
Nealen et al. 2007] have been focused on using simple lines to gen-
erate a 3D shape based on local geometric properties implied by
lines. They typically also support editing operations such as cutting,
growing, and blending. However, these methods can only gener-
ate simple models and are less effective for organic shapes with
smoothly varying surfaces. Later, researchers introduced methods
to generate free-form surfaces by exploiting geometric constraints
in specific types of line drawings [Karpenko and Hughes 2006; Xu
et al. 2014]. Fan et al. [2013] utilize shadow guidance to guide the
sketching part and further search for a nearest shape from a dataset
to combine a new 3D shape. Since multi-view sketches can convey
depth information directly, River et al. [2010] introduced a two-view
sketch-based modeling system. Recently, Li et al. [2017] proposed

Contour-based 3D Modeling through Joint Embedding of Shapes and Contours I3D ’20, May 5–7, 2020, San Francisco, CA, USA

a sketch-based 3D modeling method, where some support lines
are employed to indicate the surface curvatures of 3D models and
predict the curvature field. To generate occluded parts, multi-view
interaction is supported in their method. Even though the above
geometric methods achieve certain successes on the generation of
3D shapes, their user input still requires non-trivial prior knowl-
edge, instead of drawing simple occluding contours. In addition,
the concept of sketch-based modeling has also been extended for
creating 3D facial expressions [Sucontphunt et al. 2008] and various
man-made objects [Chen et al. 2013; Xu et al. 2016].

Learning-based shape synthesis. Learning-based shape syn-
thesis methods aim to learn geometric structure from 3D datasets
in order to extract the features of 3D shapes or even generate plausi-
ble 3D shapes. Several methods were designed to predict the depth
image and norms from a single image [Eigen and Fergus 2015;
Hoiem et al. 2005; Saxena et al. 2008; Wang et al. 2015] through
supervised learning. Human face reconstruction through images
has been well studied [Richardson et al. 2017; Tuážěn Trážğn et al.
2018; Winkler et al. 2018]. Gkioxari et al. [2019] proposed a method
to predict the mesh from an image. More complex shape recon-
struction tasks have attracted a lot of attentions in recent years.
For example, Tatarchenko et al. [2016] utilize the encoder-decoder
architecture of convolutional network (ConvNet) to predict mul-
tiple views of a given object in 2D space. Later, Lun et al. [2017]
extend the idea and use the U-net architecture [Ronneberger et al.
2015] to generate 3D shapes with the front and side view sketches.
However, the two views of sketches are still difficult to draw since
there still exist some shared information between the two views
such as the height of a standing character. A single-view sketch-
based modeling method [Li et al. 2018] was also proposed to predict
the curvature field with the ConvNet and U-Net architecture. This
method requires support lines for surface curvatures and needs
multi-view interactions to generate full 3D shapes. By contrast, our
work only requires a single-view occluding contour to generate or
manipulate a 3D shape, which can greatly reduces the difficulty
and manual effort of sketch-based modeling.

3 APPROACH OVERVIEW
As illustrated in Figure 2, our method constructs a space that jointly
embeds 3D shapes and 2D occluding contours. Our embedding
space is not limited to any object categories or particular view di-
rections, where a point represented by a latent vector can represent
a sketch extracted from an object category with an arbitrary pro-
jection direction. And, our method can even generate a similar one
through the trained VAE. That is, the latent vectors of three view
projections (i.e., front, top, and side views) of a certain 3D object
can be merged together to form a new vector that can be further
used to generate the voxel representation of the 3D shape through
a trained volumetric autoencoder.

To construct the joint embedding space, we use a two-step pro-
cess to train a VAE and a volumetric autoencoder. At the first step,
with the occluding contours extracted from a 3D model dataset
as the training data, a VAE model is trained to encode the occlud-
ing contours to latent vectors that are distributed in a continuous
embedding space (§4.2). Thanks to the multivariate Gaussian dis-
tribution in the continuous embedding space, any latent vector in

the space can be decoded to an occluding contour, and the distance
between latent vectors can also describe the similarity between the
corresponding occluding contours. At the second step, to enable
the latent vectors for the generation of 3D models, we employ su-
pervised training on a volumetric autoencoder framework (§4.3).
Specifically, since the three view projections of 3D models in our
dataset have been known, we propose a loss function to minimize
the distance between the combination of the latent vectors of the
three view projections of a 3D model, with the encoder output of
the volumetric autoencoder, and expect the output of the volumet-
ric autoencoder to be similar to the voxel representation of the 3D
model. In this way, the trained volumetric autoencoder is capable
to generate corresponding 3D voxels given the occluding contours
from the three views. Therefore, our joint embedding space can
both represent and generate 2D occluding contours and 3D shapes,
and it can be directly used for sketch-based modeling and shape
manipulation (§5). Finally, we employ the marching cube algorithm
[Lorensen and Cline 1987] and Laplacian smoothing [Field 1988]
as post-processing steps to convert the 3D voxel representation to
its corresponding polygon mesh model.

Data preprocessing. Our dataset consists of 1165 3D models
collected from [Chen et al. 2009] and [Shilane et al. 2004]. We
extended the data by uniformly generating 50 random viewpoints
on a bounding sphere whose center is the same as the geometric
center of the enclosed 3D shape (see an example in Figure 3 (left)).
We obtained a total of 58,250 (1165*50) 3D projections at the end.
After that, we employ an existing non-photorealistic rendering
algorithm [DeCarlo et al. 2003] to generate occluding contours
from the front, top, and side views (also called samples in this
writing) for each 3D projection case, and record the three-views
relation as the label (see Figure 3 (right)). We utilize three views
of occluding contours instead of one to create embedding space
since we intent to create the embedding space dense and the three
views we select can cover enough information of a 3D model. In
this way, we obtained a total of 174,750 (=58,250*3) samples and
we then randomly split the samples to the VAE training data (90%)
and the test data (10%). Figure 3 shows the process of collecting the
occluding contours from the three views of a 3D model.

4 OUR METHOD
In this section, we first describe how to train a variational autoen-
coder network to encode the occluding contours to latent vectors,
in order to construct an embedding space. Then, we detail how
to jointly embed 3D shapes in the space by training a volumetric
autoencoder, so that the latent vectors in the embedding space can
be decoded to both 2D occluding contours and 3D shapes.

4.1 Variational Autoencoder
As a generative model, variational autoencoder (VAE) that is the
key model to construct the embedding space in our work, has at-
tracted a lot of attentions in recent years [Kingma andWelling 2013;
Rezende et al. 2014; Tan et al. 2018]. VAE has a similar structure
with the autoencoder (AE) [Kingma and Welling 2013] that consists
of an encoder Eθ (x) and a decoder Dϕ (z). The main differences be-
tween VAE and AE is that, VAE approximates Eθ (x) as a posterior
distribution q(z |x), instead of using a deterministic function for

I3D ’20, May 5–7, 2020, San Francisco, CA, USA A. Jin, Q. Fu, Z. Deng

Embedding Space

…

3D Shapes and Voxels

Volumetric Encoder

…

Occluding Contours

VAE Encoder

VAE Decoder Volumetric Decoder

Figure 2: The architecture of ourmethod, including a dataset
that provides 3D shapes and their corresponding 2D occlud-
ing contours (top), a variational autoencoder and a volumet-
ric autoencoder for the joint embedding of the 3D shapes
and 2D contours (middle). The points in the embedding
space are represented by latent vectors that can be decoded
to 2D contours or 3D shapes, thus to support sketch-based
3Dmodeling and shapemanipulation applications (bottom).

Eθ (x) in AE [Kingma and Welling 2013]. Eθ (x) can encode input x
to a latent vector z, while Dϕ (z) can generate an output x ′ from the
latent vector z. Particularly, VAE can generate new data x ′ by sam-
pling z from a prior distribution pϕ (x |z). We train the encoding and
decoding parameters θ and ϕ using stochastic gradient variational
Bayes (SGVB) algorithm [Kingma and Welling 2013] as follows:

θ∗,ϕ∗ = argmin
θ,ϕ
Ez∼Eθ (x)[− logpϕ (x |z)] + Dkl (Eθ (x)|p(z)), (1)

where Dkl denotes the Kullback-Leibler divergence, which mea-
sures the difference between Eθ (x) andp(z). In VAE,p(z) is specified
as a standard Normal distribution: p(z) ∼ N (0, 1), and Eθ (x) is a
multivariate Gaussian distribution: Eθ (x) ∼ N (zµ ,diaд(zσ).

The latent code z is sampled as:

z = zµ + ϵ ⊙ zσ , ϵ ∼ N (0, 1), (2)

where ⊙ is an element-wise matrix multiplication operator. This
expression of z is a re-parameterization trick [Kingma and Welling
2013] to make all the operations differentiable for back propagation.

4.2 Embedding Space Creation
To construct the joint embedding space, we train a VAE network us-
ing the 2D occluding contours extracted from our 3D shape dataset.
We consider an occluding contour as a binary image and feed it to
the VAE model at the training stage. Specifically, we reshape the
input image to 128 × 128 × 1 before feeding it to the VAE encoder,
and encode the input into an embedding space with 128-dimension
parameters: zµ and zσ . Then, we sample z from zµ and zσ using
the re-parameterization trick introduced in [Kingma and Welling

Table 1: The VAE architecture used to create the embedding
space. The last fully connected layer in the encoder is du-
plicated for zµ and zσ and uses Equation 2 to generate z as
output. All convolutional layers are followed by batch nor-
malization, leakyReLUactivation, and dropout layer, except
the last layer of the decoder.

Layer Type Kernel Stride Output
enc. conv2d 5×5 2×2 64×64×32
enc. conv2d 5×5 2×2 32×32×64
enc. conv2d 5×5 2×2 16×16×128
enc. conv2d 5×5 2×2 8×8×256
enc. fc N/A N/A 128
dec. fc N/A N/A 16384
dec. deconv2d 5×5 2×2 16×16×128
dec. deconv2d 5×5 2×2 32×32×64
dec. deconv2d 5×5 2×2 64×64×32
dec. deconv2d 5×5 2×2 128×128×1

(a) (b)

Figure 3: Examples of the projections for a 3D shape with
random viewpoints with the same center (a). We extract
three views of occluding contours (i.e., front, side, top views)
for each projection (b).

2013]. The latent vector can be used as the input of the decoder and
reverted to a 128 × 128 × 1 image. Table 1 shows the specifications
of our VAE model.

We utilize two loss functions to learn the optimal weights of the
VAE network. The first one is the reconstruction loss (denoted as
Lr econ_2D) between the output of the decoder and the input image,
and the second is the KL divergence loss (denoted as LKL). Since
our input is a binary image, we use binary cross entropy as the loss
function for the reconstruction loss. In order to increase the impact
of the reconstruction loss on the weights of the network, our final
loss function is defined as follow:

LVAE = wr econLr econ_2D + LKL . (3)

The VAE encoder and decoder networks have similar architec-
tures, with kernel size = 5, stride = 2, and padding = 1 for all the
convolution operations. After convolution operations, we add a
batch normalization layer, leaky ReLU activation, and a dropout
layer, except the last layer of the decoder. The siдmoid activation is

Contour-based 3D Modeling through Joint Embedding of Shapes and Contours I3D ’20, May 5–7, 2020, San Francisco, CA, USA

used for the decoder output. We setwr econ to 100, keep the proba-
bility to 0.95 in the dropout layer, and set β to 0.2 in the leaky ReLU
activation. We trained in total 50 epochs with the Adam solver, with
the batch size = 64 and the learning rate = 0.5 × 10−3.

4.3 Joint Embedding Space

Volumetric Decoder

VAE
Encoder

VAE
Decoder

μ

σ

Figure 4: The 2D visualization of a portion of the embedding
space. Each point in the space is a latent vector that is en-
coded by the trained VAE to represent a certain occluding
contour (top). The latent vectors of the three view projec-
tions can be combined and decoded to a 3D voxel represen-
tation by a trained volumetric autoencoder (bottom).

As illustrated in Figure 4, the latent vectors of the 2D occluding
contours form a space. 3D shapes can be projected with a cer-
tain viewpoint and then be embedded into the space. The distance
between latent vectors in the embedding space represents the sim-
ilarity between the corresponding occluding contours. Our VAE
model can ensure this since the encoder actually extracts features
(i.e., latent vectors) from input contours, and similar contours are
close each other in the low dimensional embedding space. For ex-
ample, the front view of a dog’s occluding contour may be similar to
the front view of a horse’s occluding contour, and thus their corre-
sponding latent vectors would have a small distance. However, this
projection is a one-way mapping from 3D shapes to 2D occluding
contours. We also want the latent vectors in the embedding space
can be mapped (decoded) back to 3D shapes. To this end, we train
a volumetric autoencoder to use the view-related latent vectors
to reconstruct corresponding 3D shapes. We employ supervised
training to force such a vector to be the same as the combination
of the latent vectors of the projections of 3D shapes from the front,
side, and top views. We choose to use the three orthogonal views
since they are generally sufficient to characterize the geometry of
3D models.

Table 2: The autoencoder architecture used to map 3D
shapes into the embedding space. All convolutional layers
are followed by batch normalization, leaky ReLU activation,
and dropout layer, except the last layer of the decoder.

Layer Type Kernel Stride Output
enc. conv3d 5×5 2×2 32×32×32×32
enc. conv3d 5×5 2×2 16×16×16×64
enc. conv3d 5×5 2×2 8×8×8×128
enc. fc N/A N/A 384
dec. fc N/A N/A 65536
dec. deconv3d 5×5 2×2 16×16×16×64
dec. deconv3d 5×5 2×2 32×32×32×32
dec. deconv3d 5×5 2×2 64×64×64×1

In order to feed 3D shapes to the network, we first voxelize 3D
shapes to grids with 64 × 64 × 64 resolution, where the value of a
grid cell equals 1 if the cube of this grid is inside or on the boundary
of the 3D shape; and 0 otherwise. The encoder then encodes the
voxelized 3D shape to a 384-dimension (3 × 128) vector that can
be decoded to the original 3D shape by the decoder. We expect
the encoded vector to be a combination of the latent vectors of
the projections of the 3D shapes from three orthogonal views in
the order of the front view, the left view, and the top view in the
embedding space. Specifically, we use 3D convolutional operations
for convolution layers, and each convolution layer is followed by
batch normalization layer, leaky ReLU activation, and dropout layer.
The siдmoid activation is used in the decoder output to generate a
grid with 64 × 64 × 64 × 1 resolution. The details of the volumetric
autoencoder network are given in Table 2.

We implement two loss functions to train this network. The first
one is a reconstruction loss Lr econ_3D to calculate the difference
between the input 3D shape and the generated 3D shape. We use
binary cross entropy to measure the difference as a normal autoen-
coder. The second loss function, which leads to the main difference
between our method and a normal autoencoder is to measure the
difference of the three-view latent vectors y generated by the volu-
metric encoder with the VAE encoder output ŷ, given three-views
occluding contours of one 3D model, defined as follows:

Lview = | |y − ŷ | |2. (4)

Similar to the KL loss in our VAE model, the Lview is introduced
to embed 3D shapes into the embedding space by minimizing the
distance between its encoder outputy and the VAE encoder outputs
for three-views occluding contours ŷ in the embedding space. The
total loss of the network is expressed as follows:

LAE = Lr econ_3D + Lview , (5)

The convolutional layers of the encoder and the decoder of the
volumetric autoencoder have a similar architecture with the afore-
mentioned VAE network, but use 3D convolution operations. We
use the siдmoid activation for the output of the decoder. For su-
perparameters, we set the keep probability to 0.95 for dropout
layers, and 0.2 for leaky ReLU activation. We trained 80 epochs
with the Adam solver, with the batch size = 64 and the learning rate
= 0.5 × 10−3.

I3D ’20, May 5–7, 2020, San Francisco, CA, USA A. Jin, Q. Fu, Z. Deng

Embedding Space

Volumetric
Encoder

Volumetric
Decoder

Manipulation
Modeling

Swapping

Manipulation
 Input

Modeling
Input

Output

Figure 5: Workflows of the two selected applications of our
method. For 3Dmodeling (blue arrows), the input occluding
contour (in blue circle) is swapped with a similar one in our
dataset and then is combined with the contours from the
other two views to form a vector, which is decoded back to
a new 3D shape. For shape manipulation (red arrows), the
input 3D shape is first encoded to a vector, and then a similar
occluding contour in the embedding space is swapped with
the corresponding part in the vector.

5 SELECTED APPLICATIONS
In this work, we show two selected applications of our method. The
first is to transform a hand-drawn or image-extracted sketch to a
3D model. The second is to edit or manipulate existing 3D models
to generate shape variations.

3D modeling based on a single 2D sketch. For this application,
we first feed a user sketch to the encoder of the VAE network to
generate its latent vector. Then, we search and identify an occluding
contour sample in the embedding space with the minimum latent
vector distance to the given sketch. Since the identified occluding
contour is the projection of a specific 3D shape in our dataset,
the latent vectors of the projections from the other two views are
also known due to the pre-specified labels (i.e., the two views of
occluding contours in our dataset). Therefore, the latent vector of
the input sketch and the latent vectors of the other two views of the
most similar occluding contour are fed to the trained volumetric
autoencoder and generate a 3D voxel representation. In this pipeline,
the only input is a single 2D sketch, the latent vectors of the other
two views, required by the volumetric autoencoder, can be simply
acquired by feeding the two views of the occluding contours of the
searched 3D shape in our dataset to the VAE encoder or directly
feeding the 3D shape to the encoder of the volumetric autoencoder
to obtain the latent vectors. Figure 5 illustrates this process via an
example (blue arrows).

3D model manipulation. In this application, we first encode an
input 3D voxel to its latent vectors of three views via the volumetric
encoder, the three views of the latent vector have to follow the order
of the front view, the left view, and the top view since we trained
the volumetric autoencoder with this view order. Then, we use the
latent vector of its front view projection to search for several similar
occluding contour samples in the embedding space. These occluding
contours provide possible deformation variations of the input 3D

(a)

(b)

(c)

(d)

Figure 6: Comparisons between contours generated by the
non-photorealistic rendering method given a 3D model
(columns 1, 3 and 5) and by the VAE decoder given
three latent vectors generated from the volumetric encoder
(columns 2, 4 and 6). Front, left, and top views are compared
from left to right. The categories are birds, chairs, cups, and
fourlegs from (a) to (d), respectively.

model. In this way, we can obtain shape variations of the input
3D model through the trained volumetric autoencoder: replacing
its front view projection with a similar occluding contour in the
embedding space. Moreover, users can also manually edit the front
view projection of the input 3D model by removing or adding line
segments to change its 2D shape, which can indirectly manipulate
the resulting 3D shape. This application focus onmanipulate outline
of a given 3D model, details of the 3D model cannot be handled
with this method. Figure 5 illustrates this process with an example
(with red arrows). Note that this application cannot be done at the
level of latent vectors due to the uncertainty of the relation between
3D surfaces and each dimension of the latent vectors.

6 RESULTS
In this section we show our experimental results. We also demon-
strate the effectiveness of our method for sketch-based 3Dmodeling
through comparisons with state-of-the-art, sketch-based 3D model-
ing methods.

As shown in the top of Figure 4, in the joint embedding space
(visualized in 2D), we can observe the positions of the projections
of the same 3D shape from different views, and the positions of
the projections of different 3D shapes from the same view. We can
see that the closer two occluding contours are in the space, the
more similar shapes they have. This shows that the latent vectors
that represent 2D occluding contours in the space can also describe
their shape similarity. In the bottom of figure 4, we show that the
latent vectors of three view projections of a 3D shape can be put
together and then be decoded to a 3D voxel representation through
the trained volumetric autoencoder. Since the embedding space is
independent of object categories, our method is suitable for both
man-made and natural objects.

Contour-based 3D Modeling through Joint Embedding of Shapes and Contours I3D ’20, May 5–7, 2020, San Francisco, CA, USA

(a) (b) (c) (a) (b) (c)

Figure 7: Sketch-based 3Dmodeling results by our approach.
Our method can use either hand-drawn sketches (top two
rows) or occluding contours extracted from images (the last
row) of column (a) to generate 3D voxels representations (b)
and polygon meshes (c).

(a)

(b)

(c)

Figure 8: Shape manipulation results by our approach. We
manually modified the occluding contours (a) of the given
models to generate shape variations. In each case, the first
3D voxel representation and its corresponding polygon
mesh are used as the reference, (b) and (c) are the generated
voxel representations and their corresponding smoothed
polygon meshes, respectively.

Input Xie et al. [2013] Our method

Figure 9: Comparisons between ourmethod and themethod
by Xie et al. [2013].

Li et al. [2018] Our method

Figure 10: Comparisons with Li et al. [2018]. We show the
required inputs of Li et al. [2018] and our method, as well as
the correspondingmodeling results. Note that the results by
Li et al. [2018] are directly taken from the original authors’
paper.

(a)

(b)

Figure 11: Failure cases by our method. (a) the input sketch
is signficantly different from any shapes in the training
dataset, and (b) the three orthogonal views of the input con-
tain overlapping geometry.

Since the quality of the embedding space directly impacts the
results by our method, we calculated the mean square error (MSE)
for randomly selected 12 categories (i.e., airplane, ant, bird, chair,
cup, fish, four-leg, hand, plier, table, teddy, and vase): the average
MSE is 0.019. Figure 6 visualizes the comparisons between the
contours generated by the non-photorealistic rendering method
and generated by using the VAE decoder on three latent vectors
obtained from the volumetric encoder. The examples shown in this
figure were randomly selected from our experiments. As shown in
this figure, the contours generated by our approach are reasonably
close to the ground-truth.

To evaluate the quality of the volumetric autoencoder, we also
calculated the mean IoU (Intersection over union), precision, and
recall for 12 different categories with the voxel representations
of the 3D shapes in our dataset as the ground truth, shown in
Table 3. In each category, we randomly selected 900 samples to do
the calculations. As shown in this table, our method performed
reasonably well on the three quantitative measures, in particular,
the precision and recall.

We also quantitatively compared our method with two baseline
sketch-based modeling methods: Igarashi et al. [2007] and Nealen
et al. [2007]. Since it is intuitive to measure the reconstruction
accuracy using IoU in 3D space, we voxelized the resulting meshes
by Igarashi et al. [2007] and Nealen et al. [2007] so that we can
calculate the IoU through the voxel expression with the original 3D

I3D ’20, May 5–7, 2020, San Francisco, CA, USA A. Jin, Q. Fu, Z. Deng

Table 3: The IoU, precision, and recall of the decoded re-
sults by the volumetric autoencoder for 12 different cate-
gories, with the voxel representations of the 3D shapes in
our dataset as the ground truth.

Category IoU Precision Recall
Airplane 0.76 0.90 0.83

Ant 0.70 0.89 0.77
Bird 0.76 0.89 0.83
Chair 0.68 0.76 0.86
Cup 0.85 0.93 0.91
Fish 0.85 0.94 0.89

Four-leg 0.79 0.92 0.85
Hand 0.78 0.91 0.84
Plier 0.76 0.89 0.83
Table 0.76 0.89 0.83
Teddy 0.88 0.95 0.93
Vase 0.90 0.96 0.93

Average 0.79 0.90 0.86

models. We randomly selected three sketches from the categories of
cup, airplane, and teddy. With the selected sketches, we generated
3Dmodels using the method by Igarashi et al. [2007], the method by
Nealen et al. [2007], and our method, respectively. The comparison
results are shown in Table 4. We can clearly see that our method
achieved higher IoU reconstruction accuracies.

We also compared our method with a state of the art, deep
learning approach by Delanoy et al. [2018]. The comparison results
are also shown in Table 4. We directly ran our method on the
same chair and vase categories that were used by Delanoy et al.
[2018]. We selected 10% of samples in each category and calculated
the mean IoUs. Even though our training dataset only contains 57
different chairs and 36 different vases, compared to 540 different
chairs and 270 different vases in the training dataset of Delanoy et
al. [2018], our method can still obtain slightly higher IoUs than the
method by Delanoy et al. [2018].

Figure 7 shows some 3Dmodeling results by ourmethods through
hand-drawn sketches and image-extracted 2D occluding contours.
The 3D voxel representation is the direct output from our model,
which is further converted to 3D polygonmeshes by thewell-known
marching cubes algorithm [Lorensen and Cline 1987]. The 3D mod-
els generated by our approach are well matched with the sketches
from the given view point. Note that all the input sketches and
the generated models are unseen during training process. Figure 8
shows the generated 3D shape variations by our method.

In Figure 9, we compare our method with the method by Xie
et al. [2013]. The latter employs sketch-based object retrieval to
select suitable parts from a dataset to assemble man-made objects.
We show two cases with the same inputs, and also provide the
voxel representations of the results by Xie et al. [2013]. In order to
make a fair comparison, the input sketches in this comparison did
not have related 3D models in the dataset that was used by both
our method and Xie et al. [2013]. As shown in this figure, we can
see both the two methods can create plausible 3D shapes for the
given sketches. Meanwhile, we admit that the 3D model quality by

Table 4: IoU comparisons between ourmethod and two base-
line methods: Igarashi et al. [2007] and Nealen et al. [2007],
and between our method and a state of the art, deep learn-
ing method by Delanoy et al. [2018]. The larger the IoU, the
better the reconstruction accuracy.

Method Cup Airplane Teddy Chair Vase
Igarashi et al. [2007] 0.20 0.15 0.71 - -
Nealen et al. [2007] 0.22 0.10 0.69 - -
Delanoy et al. [2018] - - - 0.38 0.57

Our method 0.88 0.72 0.89 0.41 0.61

such pure assembly-based methods like Xie et al. [2013] is better
than that of our method. However, Xie et al. [2013] synthesizes
3D models based on part assembly, while our method can directly
generate 3D models, not requiring a pre-created, man-made part
depository. As highlighted in the red circled regions, certain parts of
the chairs synthesized by Xie et al. [2013] are visibly different from
the counterparts of the input sketches due to the limited coverage
of the pre-created part repository. In particular, the synthesized
chair by Xie et al. [2013] in the bottom of Figure 9 has 4 legs, while
the input user sketch actually has 5 legs. By contrast, our method
does not have such a limitation and can produce correct results.

In Figure 10, we also compare our method with the sketch-based
3D modeling method by Li et al. [2018] that directly generates 3D
shapes based on sketch inputs. The work of [Li et al. 2018] shares
a similar goal as our work. However, the work of [Li et al. 2018]
requires more detailed (often non-trivial), semantic sketch inputs
to indicate surface curvature information including the front and
back views of the same 3D shape and additional information such
as boundary (i.e., red lines) to assist the fusion of two surfaces
(i.e., the front and back meshes) together in post-processing. By
contrast, our method is substantially easier to use even for novice
users thanks to the simple requirement on the input.

7 DISCUSSION AND CONCLUSION
In this paper we present a new method that jointly embeds 3D
shapes and 2D occluding contours into a continuous space, in order
to support applications including sketch-based 3Dmodeling and 3D
shape manipulation. Specifically, we train a variational autoencoder
to encode occluding contours to latent vectors, which can represent
the occluding contours and measure their similarity in the space.
We also train a volumetric autoencoder that uses a vector consists
of the latent vectors of the three orthogonal view projections of
a 3D model, to generate its 3D voxel representation. To evaluate
the effectiveness of our method, we conducted many experiments
and also demonstrated the selected applications of our approach
for sketch-based 3D modeling and shape manipulation, as well as
the comparisons with state-of-the-art, sketch-based 3D modeling
methods.

Limitations. Our current method still has several limitations.
First, our method only focuses on the generation of coarse 3D
shapes. Since our method only can generate 3D models with coarse
surface details, certain small-scale surface details cannot be gener-
ated. Hence, the 3D models by our method typically need further
polishing or post-processing, or be used as the starting point to

Contour-based 3D Modeling through Joint Embedding of Shapes and Contours I3D ’20, May 5–7, 2020, San Francisco, CA, USA

guide 3D shape deformations or assembly. Besides, due to the poten-
tial noise in the generated voxel representation, the results might
need filtering, smoothing, or refinements based on the symmetry
of the shape or other geometric constraints. Second, our method
can only generate 3D models whose occluding contours are similar
to those of the shapes in the dataset. If the input sketch is signifi-
cantly different from any shapes in the dataset, our method may
fail to produce desired results (one example is shown in Figure
11(a)). Third, if the three orthogonal views of the input contain
overlapping geometry, our method could fail to handle such cases
(an example is shown in Figure 11(b)).

We plan to improve our method to handle more meticulous sur-
face details of 3D models. We are also interested in training a model
that can directly encode the representation of the sketches of a
3D model in different views, without obtaining the 2D projections
through non-photorealistic rendering. We believe that, not limited
to the demonstrated sketch-based 3D modeling and shape manipu-
lation applications, the introduced joint embedding space can find
its potential use for other geometric processing and shape modeling
applications.

ACKNOWLEDGMENTS
This work is in part supported by NSF IIS-1524782. Qiang Fu is in
part supported by an Open Project supported by the Virtual Reality
Systems and Technologies National Key Lab in China.

REFERENCES
Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers,

and James Davis. 2005. SCAPE: shape completion and animation of people. ACM
transactions on graphics (TOG) 24, 3 (2005), 408–416.

Melinos Averkiou, Vladimir G Kim, Youyi Zheng, and Niloy J Mitra. 2014. Shapesynth:
Parameterizing model collections for coupled shape exploration and synthesis.
Computer Graphics Forum 33, 2 (2014), 125–134.

Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2008. ILoveSketch: as-natural-
as-possible sketching system for creating 3d curve models. In Proceedings of the 21st
annual ACM symposium on User interface software and technology. ACM, 151–160.

Volker Blanz, Thomas Vetter, et al. 1999. A morphable model for the synthesis of 3D
faces.. In proc. of ACM Siggraph’99, Vol. 99. 187–194.

Tao Chen, Zhe Zhu, Ariel Shamir, Shi-Min Hu, and Daniel Cohen-Or. 2013. 3-sweep:
Extracting editable objects from a single photo. ACM Transactions on Graphics
(TOG) 32, 6 (2013), 195.

Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhouser. 2009. A Benchmark
for 3D Mesh Segmentation. ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 3
(Aug. 2009).

Matthew T Cook and Arvin Agah. 2009. A survey of sketch-based 3-D modeling
techniques. Interacting with computers 21, 3 (2009), 201–211.

Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony Santella. 2003.
Suggestive contours for conveying shape. ACM Transactions on Graphics (TOG) 22,
3 (2003), 848–855.

Johanna Delanoy, Mathieu Aubry, Phillip Isola, Alexei Efros, and Adrien Bousseau.
2018. 3D Sketching using Multi-View Deep Volumetric Prediction. Proceedings of
the ACM on Computer Graphics and Interactive Techniques 1, 21 (may 2018).

Chao Ding and Ligang Liu. 2016. A survey of sketch based modeling systems. Frontiers
of Computer Science 10, 6 (01 Dec 2016), 985–999.

David Eigen and Rob Fergus. 2015. Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture. In Proceedings of the
IEEE international conference on computer vision. 2650–2658.

Lubin Fan, Ruimin Wang, Linlin Xu, Jiansong Deng, and Ligang Liu. 2013. Modeling by
drawing with shadow guidance. Computer Graphics Forum 32, 7 (2013), 157–166.

David A Field. 1988. Laplacian smoothing and Delaunay triangulations. Communica-
tions in applied numerical methods 4, 6 (1988), 709–712.

Qiang Fu, Xiaowu Chen, Xiaoyu Su, and Hongbo Fu. 2016. Natural lines inspired 3D
shape re-design. Graphical Models 85 (2016), 1–10.

Justin Johnson Georgia Gkioxari, Jitendra Malik. 2019. Mesh R-CNN. ICCV (2019).
Yotam Gingold, Takeo Igarashi, and Denis Zorin. 2009. Structured annotations for

2D-to-3D modeling. ACM Transactions on Graphics (TOG) 28, 5 (2009), 148.

Derek Hoiem, Alexei A Efros, and Martial Hebert. 2005. Geometric context from a
single image. In Tenth IEEE International Conference on Computer Vision (ICCV’05)
Volume 1, Vol. 1. IEEE, 654–661.

Haibin Huang, Evangelos Kalogerakis, Ersin Yumer, and Radomir Mech. 2017. Shape
Synthesis from Sketches via Procedural Models and Convolutional Networks. IEEE
transactions on visualization and computer graphics 23, 8 (2017).

Takeo Igarashi, Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. 2007. Teddy:
a sketching interface for 3D freeform design. In Acm siggraph 2007 courses. ACM,
21.

Levent Burak Kara and Kenji Shimada. 2007. Sketch-based 3d-shape creation for
industrial styling design. IEEE Computer Graphics and Applications 27, 1 (2007),
60–71.

Levent Burak Kara and Kenji Shimada. 2008. Supporting early styling design of
automobiles using sketch-based 3d shape construction. Computer-Aided Design
and Applications 5, 6 (2008), 867–876.

Olga A Karpenko and John F Hughes. 2006. SmoothSketch: 3D free-form shapes from
complex sketches. ACM Transactions on Graphics (TOG) 25, 3 (2006), 589–598.

I. K. Kazmi, L. You, and J. J. Zhang. 2014. A Survey of Sketch BasedModeling Systems. In
2014 11th International Conference on Computer Graphics, Imaging and Visualization.
27–36.

Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114 (2013).

Changjian Li, Hao Pan, Yang Liu, Xin Tong, Alla Sheffer, and Wenping Wang. 2017.
BendSketch: modeling freeform surfaces through 2D sketching. ACM Transactions
on Graphics (TOG) 36, 4 (2017), 125.

Changjian Li, Hao Pan, Yang Liu, Xin Tong, Alla Sheffer, and Wenping Wang. 2018.
Robust Flow-guided Neural Prediction for Sketch-based Freeform Surface Modeling.
ACM Trans. Graph. 37, 6, Article 238 (Dec. 2018), 12 pages.

Yangyan Li, Hao Su, Charles Ruizhongtai Qi, Noa Fish, Daniel Cohen-Or, and Leonidas J
Guibas. 2015. Joint embeddings of shapes and images via cnn image purification.
ACM transactions on graphics (TOG) 34, 6 (2015), 234.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J
Black. 2015. SMPL: A skinned multi-person linear model. ACM transactions on
graphics (TOG) 34, 6 (2015), 248.

William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution 3D
surface construction algorithm. In ACM siggraph computer graphics, Vol. 21. ACM,
163–169.

Zhaoliang Lun, Matheus Gadelha, Evangelos Kalogerakis, Subhransu Maji, and Rui
Wang. 2017. 3d shape reconstruction from sketches via multi-view convolutional
networks. In 2017 International Conference on 3D Vision (3DV). IEEE, 67–77.

Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. 2007. FiberMesh:
designing freeform surfaces with 3D curves. ACM transactions on graphics (TOG)
26, 3 (2007), 41.

Luke Olsen, Faramarz F Samavati, Mario Costa Sousa, and Joaquim A Jorge. 2009.
Sketch-based modeling: A survey. Computers & Graphics 33, 1 (2009), 85–103.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic
backpropagation and approximate inference in deep generative models. arXiv
preprint arXiv:1401.4082 (2014).

Elad Richardson, Matan Sela, Roy Or-El, and Ron Kimmel. 2017. Learning Detailed
Face Reconstruction From a Single Image. In Proc. of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Alec Rivers, Frédo Durand, and Takeo Igarashi. 2010. 3D Modeling with Silhouettes.
ACM Trans. Graph. 29, 4 (2010), 109:1–109:8.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference onMedical
image computing and computer-assisted intervention. Springer, 234–241.

Ashutosh Saxena, Min Sun, and Andrew Y Ng. 2008. Make3d: Learning 3d scene
structure from a single still image. IEEE transactions on pattern analysis and machine
intelligence 31, 5 (2008), 824–840.

Tianjia Shao, Wilmot Li, Kun Zhou, Weiwei Xu, Baining Guo, and Niloy J. Mitra. 2013.
Interpreting Concept Sketches. ACM Transactions on Graphics 32, 4 (2013), 10.

Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser. 2004. The
princeton shape benchmark. In Proceedings Shape Modeling Applications, 2004. IEEE,
167–178.

Tanasai Sucontphunt, Zhenyao Mo, Ulrich Neumann, and Zhigang Deng. 2008. Inter-
active 3D facial expression posing through 2D portrait manipulation. In Proceedings
of graphics interface 2008. Canadian Information Processing Society, 177–184.

Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. 2018. Variational autoencoders
for deforming 3d mesh models. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 5841–5850.

Flora Ponjou Tasse and Neil Dodgson. 2016. Shape2vec: semantic-based descriptors
for 3d shapes, sketches and images. ACM Transactions on Graphics (TOG) 35, 6
(2016), 208.

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. 2016. Multi-view 3d
models from single images with a convolutional network. In European Conference
on Computer Vision. Springer, 322–337.

I3D ’20, May 5–7, 2020, San Francisco, CA, USA A. Jin, Q. Fu, Z. Deng

Anh Tuážěn Trážğn, Tal Hassner, Iacopo Masi, Eran Paz, Yuval Nirkin, and GÃľrard
Medioni. 2018. Extreme 3D Face Reconstruction: Seeing Through Occlusions. In
Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Fang Wang, Le Kang, and Yi Li. 2015. Sketch-based 3d shape retrieval using convolu-
tional neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 1875–1883.

Rouven Winkler, Chengchao Qu, Sascha Voth, and Jürgen Beyerer. 2018. 3D Face
Reconstruction from Low-Resolution Images with Convolutional Neural Networks.
In Proceedings of the 2018 the 2nd International Conference on Video and Image
Processing. ACM, 83–88.

Xiaohua Xie, Kai Xu, Niloy J Mitra, Daniel Cohen-Or, Wenyong Gong, Qi Su, and
Baoquan Chen. 2013. Sketch-to-design: Context-based part assembly. Computer
Graphics Forum 32, 8 (2013), 233–245.

Baoxuan Xu, William Chang, Alla Sheffer, Adrien Bousseau, James McCrae, and Karan
Singh. 2014. True2Form: 3D curve networks from 2D sketches via selective regu-
larization. ACM Transactions on Graphics 33, 4 (2014).

Mingliang Xu, Mingyuan Li, Weiwei Xu, Zhigang Deng, Yin Yang, and Kun Zhou. 2016.
Interactive mechanism modeling from multi-view images. ACM Transactions on
Graphics (TOG) 35, 6 (2016), 236.

Robert C Zeleznik, Kenneth P Herndon, and John F Hughes. 2007. SKETCH: An
interface for sketching 3D scenes. In ACM SIGGRAPH 2007 courses. ACM, 19.

	Abstract
	1 Introduction
	2 Related Work
	3 Approach Overview
	4 Our Method
	4.1 Variational Autoencoder
	4.2 Embedding Space Creation
	4.3 Joint Embedding Space

	5 Selected Applications
	6 Results
	7 Discussion and Conclusion
	Acknowledgments
	References

