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A Music-driven Deep Generative Adversarial
Model for Guzheng Playing Animation
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Abstract—To date relatively few efforts have been made on the automatic generation of musical instrument playing animations. This
problem is challenging due to the intrinsically complex, temporal relationship between music and human motion as well as the lacking
of high quality music-playing motion datasets. In this paper, we propose a fully automatic, deep learning based framework to
synthesize realistic upper body animations based on novel guzheng music input. Specifically, based on a recorded audiovisual motion
capture dataset, we delicately design a generative adversarial network (GAN) based approach to capture the temporal relationship
between the music and the human motion data. In this process, data augmentation is employed to improve the generalization of our
approach to handle a variety of guzheng music inputs. Through extensive objective and subjective experiments, we show that our
method can generate visually plausible guzheng-playing animations that are well synchronized with the input guzheng music, and it
can significantly outperform the state-of-the-art methods. In addition, through an ablation study, we validate the contributions of the
carefully-designed modules in our framework.

Index Terms—deep learning, generative adversarial networks, motion capture, guzheng animation, music-driven, data augmentation
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1 INTRODUCTION

1 WHILE playing music with an instrument, musicians2

are generally in continuous motion [1], often involv-3

ing facial expression, hand gesture, torso movement, etc.4

Such visual behaviors are not only dedicated to touching a5

musical instrument at the right place for matching the score6

[2] but also visually consistent with the music rhythm to7

convey musical expression and thoughts to the audience [3],8

[4]. These visual cues reflect the musician’s interpretation9

of the music [5]. On the other hand, human observers are10

intrinsically skilled at perceiving the conveyed emotion and11

intention from such visual behaviors of music playing.12

To generate instrument-playing animations in concert13

with given music, manually making such animations or14

direct motion capture of the musician’s instrument playing15

performances are two potential solutions. However, manu-16

ally making such animations are labor-intensive, non-trivial,17

and less accurate. Collecting large-scale, quality instrument-18

playing motion capture data not only is expensive but also19

requires overwhelming efforts on manual data cleaning and20

correction. To this end, these two methods are at most lim-21

ited to few delicately planned scenarios. Another direction22

to solve this issue would be to automatically generate musi-23

cal instrument playing animations based on novel inputted24

music, without human intervention. In [6], researchers an-25

alyzed the creativity of computers in generating expres-26

sive music performances and proved that certain aspects27
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of personal styles are recognizable. This suggests that it 28

is potentially possible to directly generate music playing 29

performances based on novel inputted music. Also, several 30

previous works have attempted to model the relationships 31

between music and the corresponding instrument playing 32

behavior at low-level representations [7], [8]. 33

A straightforward data-driven solution to the automated 34

generation of instrument playing animations would be to se- 35

lect pre-defined action segments according to the features of 36

novel inputted music, and then concatenate and interpolate 37

them as the final animation. Such a method requires care- 38

fully collecting and processing action segments, and even 39

so it is difficult to ensure good synchronization between 40

the input music and actions. With the rapid advances of 41

machine learning techniques in recent years, in particular, 42

deep learning algorithms, researchers started to exploit deep 43

learning for the automatic generation of instrument playing 44

animations. For example, Shlizerman et al. [9] utilized the 45

classical temporal model of deep learning, long short-term 46

memory (LSTM) [10], to generate 2D skeleton animations 47

of playing the piano or violin from novel inputted music. 48

However, the LSTM-based network is time-consuming due 49

to the inherently sequential computation [11]. Moreover, in 50

their approach, only the regression loss is used, but the 51

regression loss focuses on the generated animation at frame- 52

level. More importantly, the adversarial loss that can enforce 53

the distribution of synthetic human motions to be close to 54

that of real human motions is not utilized, which affects 55

the quality of the resultant animations in their approach. 56

Indeed, to date, automatically generating high quality in- 57

strument playing animations for novel inputted music is 58

still considered a wide open problem. 59

Deep learning techniques have been successfully ap- 60

plied to many fields and applications. For example, in 61

recent years, the Unet [12], a variant of the CNN net- 62
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Fig. 1. Frames of a generated Guzheng-playing animation. The bottom row shows the input music; the middle row shows the outputted skeletal
animation of the upper body; and the top row shows the corresponding virtual character animation.

work, demonstrated noticeable successes in multiple tasks,63

including medical imaging [13], [14], image generation64

[15], and conversational gesture generation [16], due to65

its powerful capacity of capturing multi-scale input. In66

addition, Generative Adversarial Networks (GAN) [17] has67

been proved to be an effective framework for generating68

realistic images [15], [18] and video-realistic facial expres-69

sions [19], especially for producing high-frequency details70

in images/video.71

In this paper, taking advantage of the recently developed72

Unet [12] and GAN [17], we propose a Unet-based, end-to-73

end, music-to-motion GAN to synthesize the upper body74

motion of playing the Guzheng (a widely-known musical75

instrument in China) for any input music. Specifically, our76

method extends the Unet from the image domain to the77

animation domain, in order to capture the short-time de-78

pendence and the long-time dependence relationships be-79

tween music and motion. Based on a recorded audiovisual80

dataset of Guzheng playing, acquired by an in-house motion81

capture system, a carefully-designed, Unet-based GAN is82

developed to model the dynamic correlation between the83

music and motion in the dataset, and the trained GAN can84

be used to generate realistic upper body animations given85

novel inputted music. Via various objective and subjective86

experiments, we demonstrated that our approach can gen-87

erate natural and visually-plausible upper body animations88

of Guzheng playing, and it can soundly outperform the89

state-of-the-art LSTM-based and CNN-based methods [9],90

[12]. Figure 1 shows some frames of a synthesized Guzheng91

playing animation by our approach.92

The motion data used in [9] were captured via the Open-93

Pose library [20], but such data are well-known to suffer94

from the problems of mis-detection [9] and bone distortion95

[21]. In this work, to preserve the accurate temporal relation-96

ship between music and motion, we collected an in-house,97

high-quality dataset of Guzheng-playing motions, with the98

aid of a professional motion capture system. The collected99

Guzheng-playing motion dataset is publicly released for the100

purpose of research1.101

1. https://github.com/FuxiVirtualHuman/Guzheng-Playing

The main contributions of this work can be summarized 102

as follows: 103

• Drawing on the benefits of both the Unet and the 104

GAN, we propose an end-to-end, music-to-motion 105

GAN framework to synthesize visually-plausible up- 106

per body motion based on novel inputted Guzheng 107

music; 108

• we build the first-of-its-kind, high quality, Guzheng- 109

playing motion dataset, which will be released for 110

the research purpose in the research community. 111

2 RELATED WORK 112

Since our task is essentially an animation generation prob- 113

lem, in this section we first review recent related works on 114

the synthesis of facial animation, conversational gesture an- 115

imation, dance animation, and musical instrument playing 116

animation, then report the recent developments on deep 117

generative adversarial networks. 118

Facial animation. Many researchers have made great 119

efforts to explore the synthesis of facial animations and 120

expressions [22]–[47]. In recent years deep learning tech- 121

niques have been exploited for facial animation synthesis. 122

For example, Karras et al. [36] utilize CNN to learn the cross 123

modal mapping between audio and facial animation. Pham 124

et al. [39] employ the LSTM to capture the temporal depen- 125

dencies and futher combine the CNN and LSTM to improve 126

the model performance [42]. Readers of interest can refer 127

to recent comprehensive surveys on facial animations [48], 128

[49]. 129

Conversational gesture animation. With recent devel- 130

opments on deep learning, researchers also employ deep 131

neural models to synthesize conversational gestures from 132

speech. For example, both Ferstl et al. [50] and Ginosar 133

et al. [16] use LSTM based structures to synthesize 3D 134

joint angles and 2D joint positions, respectively, from input 135

speech prosody. Kucherenko et al. [51] first take an encoder- 136

decoder structure to map 3D joint position into a lower 137

dimensional, pose embedding space to remove pose noise, 138

and then utilize a LSTM-based framework to regress the 139
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pose embedding. Recently, Jin et al. [52] proposed a LSTM-140

based approach to generate realistic three-party head and141

eye motions based on novel acoustic speech input together142

with speaker marking (i.e., speaking time for each inter-143

locutor). Considering that there is a many-to-many mapping144

between speech and gesture, Rodriguez et al. [53] introduce145

a generative adversarial network to improve the quality146

of the generated gestures. Our work also leverages the147

adversarial training strategy and replaces LSTM with CNN148

to accelerate the framework without sacrificing the synthetic149

quality.150

Dancing Animation. Existing dancing animation syn-151

thesis works can be roughly divided into motion segment152

based methods and generative model based methods. Gen-153

erally, the motion segment based methods [54]–[59] first cut154

several pre-defined choreography dance segments from a155

database, and then select and parse these segments into a156

dance sequence. However, different methods use distinct157

segmentation strategies, e.g., Shirator et al. [54] design158

matching rules according to rhythm features. Lee et al. [55]159

first compute the music similarity and then select the best160

matched dance segments. Fukayama et al. [56] simulate the161

matching criterion with Gauss processes. Berman et al. [57]162

leverage motion graphs to optimize the selection of motion163

segments. Ye et al. [58] utilize LSTM to learn the matching164

between music and dance segments. Chen et al. [59] add165

extra information of music style and rhythm signatures in166

the matching process.167

The generative model based methods [60]–[66] aim to168

directly synthesize the dance frame at each time step.169

Ofli et al. [60] employ hidden markov models (HMM) to170

generate dance motion. Alemi et al. [61] utilize Factored171

Conditional Restricted Boltzmann Machines (FCRBM) and172

RNN to generate joint angles. Tang et al. [62] proposed a173

LSTM-autoencoder framework to synthesize joint positions.174

Lee et al. [63] proposed a framework to produce action175

units instead of action frames to synthesize smooth motions.176

Lee et al. [64] proposed a CNN based encoder-decoder177

framework to generate 2D skeleton coordinates. Huang et178

al. [65] proposed a self-attention based network to learn179

a cross-modal mapping and utilize curriculum learning to180

reduce error accumulation. Wallace et al. [66] treat the dance181

generation from music as a one-to-multimodal distribution182

mapping, and proposed a Mixture Density Recurrent Neu-183

ral Network(MDRNN) to learn the mapping.184

Both the above motion segmentation based methods and185

the generative model based methods may not be suitable186

for the synthesis of instrument playing animations. The187

main reason is that dancing animation synthesis generally188

only considers the rhythm and style in the music, while189

instrument playing animation needs the mining of the190

musical scores. For instance, pianists are able to translate191

piano music into MIDI files easily, but it is very difficult to192

analogously infer dance motion from music.193

Musical instrument playing animation. In recent years194

researchers developed many deep learning methods to auto-195

matically synthesize various musical instrument playing an-196

imations [9], [67]–[70]. For instance, Li et al. [67] combine the197

CNN and LSTM to produce pianist body movements from198

MIDI note streams and additional metric structures. In their199

work, the CNN is used to extract musical features and LSTM200

is employed to capture temporal dependencies. Shlizerman 201

et al. [9] utilize the vanilla LSTM to automatically generate 202

2D skeletal animations of piano or violin playing given 203

music input, and then further use the skeletal animations to 204

drive the animation of pre-defined 2D textured characters. 205

Considering the existence of different motion patterns in 206

different body parts, Liu et al. [68] proposed a three branch 207

framework to synthesize the violin playing motion for the 208

right hand, the left hand, and the upper body, respectively. 209

Bogaers et al. [69] explored more music features in piano 210

animation generation and demonstrated the usefulness of 211

MFCC features. Kao et al. [70] design a two-branch network 212

to synthesize the movements of the right hand and body 213

according to the characteristics of violin playing. In the right 214

hand branch, they proposed a framework combined with 215

the Unet, LSTM and self-attention, which is similar to our 216

method. In our work, we also do comparative experiments 217

with their framework. 218

Deep Generative Models. In comparison with the LSTM 219

model [10], the CNN-based network has the capability of 220

parallel computation. CNN has been widely used in tempo- 221

ral sequence processing [11], [71] and image processing [12], 222

[72], [73]. Recently Bai et al. [71] proposed a temporal convo- 223

lutional (neural) network (TCN) on sequence modeling and 224

demonstrated that the TCN model can substantially out- 225

perform generic LSTM models. Dauphin et al. [11] use one 226

linear mapping path in each convolutional layer to reduce 227

both the vanishing gradient problem and convergence time. 228

Researchers also explored to use the identity path, which 229

is similar to linear mapping path in image processing [72], 230

[73]. The above works show that the delicately-designed, 231

CNN-based networks are also capable of modeling temporal 232

sequences. 233

Ronneberger et al. [12] proposed the Unet network, a 234

variant of CNN, for image segmentation. Later, due to its 235

special structure of down-sampling layers and up-sampling 236

layers with the skipped connections between them, the Unet 237

network has been successfully extended for multiple tasks, 238

including medical imaging [13], [14], image generation [15], 239

and conversational gesture generation [16]. The module of 240

the down-sampling layers is a CNN-based encoder, mainly 241

consisting of convolution layers and max pooling layers. 242

The module of the up-sampling layers is a CNN-based 243

decoder, mainly consisting of convolution layers and de- 244

convolution layers. Oktay et al. [14] further use attention 245

mechanisms in the Unet network for medical image seg- 246

mentation. 247

The GAN model was first proposed in [17] to generate 248

images from random noise. The GAN network consists of 249

a generator G and a discriminator D. In the training stage, 250

G is trained to confuse D, and D is trained to correctly 251

distinguish whether the output of G is real or fake. Mirza 252

et al. [18] proposed the conditional GAN (cGAN) to control 253

image synthesis according to input conditions. The discrim- 254

inator in the cGAN distinguishes not only the synthetic 255

image is real or fake but also whether the image matches the 256

conditions. Isola et al. [15] proposed a patch discriminator 257

that has the benefit of fewer parameters and runs faster. For 258

a comprehensive review on GAN models and their latest 259

applications, please refer to the recent survey article [74]. 260



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JANUARY 2021 4

Guzheng

MoCap roomMoCap cameras Recording equipmentMoCap Suit

Optical marker

Guzheng

MoCap roomMoCap cameras Recording equipmentMoCap Suit

Optical marker

Fig. 2. Snapshot of the in-house motion capture setup for collecting data
in this work.

3 DATA COLLECTION AND PROCESSING261

Our deep learning based framework needs to use a quality262

dataset for model training. Therefore, in this work we used263

an in-house motion capture setup to record a dataset that264

contains both the audio (music) and motion of the musician265

who plays Guzheng. Note that the music and human motion266

were acquired simultaneously. In this section we describe267

the data collection and processing step.268

3.1 Data Collection269

To obtain a high-quality dataset, we invited a Guzheng270

musician to play 36 pieces of Guzheng music. Each piece271

lasts from 45 seconds to 6 minutes, and the total recording272

time is 1 hour 6 minutes 23 seconds. This dataset was273

collected in a VICON motion capture room. As shown in274

Figure 2, the musician wears a motion capture suit with 59275

optical mocap markers at specific locations of the human276

body, including joints, hips, elbows, wrists, etc.277

When the musician plays the Guzheng instrument, the278

motion capture system records the movements of the human279

joints, from which we can further extract the rotations and280

displacements of the joints. Since the focus of our work281

is on the upper body motion, 47 joints of the upper body,282

including the torso, head, arms, and fingers, are used in this283

work, illustrated in Figure 3. The motion capture data were284

captured at 30 frames per second (fps), and the Guzheng285

music was recorded with 44.1 kHz through a professional286

audio recording device. Due to the limitations of the used287

optical motion capture system (e.g., limited capability to288

handle occlusions), the recorded finger motion data cannot289

accurately reflect the fingers’ movements. Therefore, we290

manually corrected finger motions in our data processing291

step.292

Although our data were collected in the professional mo-293

tion capture room, a few reasons make the relative positions294

of both the hands and the strings of the Guzheng are not295

correct sometimes. Specifically, the skeleton scales of the real296

human and the virtual character are different. Motion re-297

targeting from the human to the virtual character sacrifices298

the accuracy of motion, to a certain extent. Moreover, the299

size of the virtual Guzheng is also different from the real300

one. Also, the recorded music and motion were manually301

aligned by a professional annotator, with the aid of the302

ELAN software [75].303

Head and torso:

Spine, Spine1, Spine2, Neck, Head

Left and right arms:

Clavicle, Upperarm, Forearm,

Foretwist, Foretwist1, Hand, Finger0~14

Spine
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Neck

Head

Upperarm

Forearm

Hand

Head and torso:

Spine, Spine1, Spine2, Neck, Head

Left and right arms:

Clavicle, Upperarm, Forearm,

Foretwist, Foretwist1, Hand, Finger0~14

Spine
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Neck

Head

Upperarm

Forearm

Hand

Fig. 3. Illustration of the human joints used in this work.

3.2 Data Processing 304

To meet the need of our model training task, we processed 305

the recorded music and motion sequences separately and 306

then composed them into a set of audiovisual data. 307

Music processing. Widely used in audio feature extrac- 308

tion, spectrogram has been successfully used for a variety 309

of applications, including voice conversion [76], speaking 310

gesture generation [16], etc. In this work, we extracted 311

768-dimensional spectrogram features as the input to our 312

model. Compared to MFCC features used in [9], spec- 313

trogram features have higher dimensions and keep more 314

information from the raw audio data. Each sample of music 315

audio is represented by a sequence of spectrogram features 316

f = {f1, f2, ..., ft, ..., fT }, where ft is a 768-dimensional 317

vector of spectrogram features and T is the total number of 318

frames in f . 319

Motion processing. Since the virtual character anima- 320

tion is controlled by a bound skeleton, we represent and 321

store the rotation of each joint as a Quaternion (4 dimen- 322

sions). Quaternion is chosen over other rotation represen- 323

tations (such as Euler angles) since it is more suitable for 324

smooth rotation interpolation and prevents the Gimbal lock 325

[77], [78]. 326

Based on the above quaternion representation, the 327

upper body motion is represented by a sequence (m) 328

of 188-dimensional vectors (denoted as mi), m = 329

{m1,m2, ...,mt, ...,mT }, where T is the length of sequence 330

m, and mt is the 188-dimensional motion features at 331

time t (47 joints × 4 per quaternion = 188). Moreover, 332

through the forward kinematics algorithm, the positions 333

of 3 end effectors (i.e., the left hand, the right hand, 334

and the head) were calculated and represented by a se- 335

quence (p) of 9-dimensional vectors (denoted as pt), p = 336

{p1, p2, ..., pt, ..., pT }, and pt is composed of the xyz posi- 337

tions of the 3 end effectors. Specifically, we calculated the 338

position of each end effector relative to the skeletal root, 339
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Generator
(G)

Discriminator
(D)

Real Fake

Capture Motion

T:
128

Feature size: 188

Predict Motion

T:
128

Music

Spectrogram

Step1: G

Step2: G+D

Feature size: 188

Fig. 4. Pipeline overview of the proposed music-to-motion framework. The framework consists of a generator and a discriminator. Please see
Figures 5 and Figure 9 for more details on the generator and the discriminator, respectively.

and then further normalized the position data in order to340

enforce the resultant data distributing between [0,1].341

To this end, we created an audiovisual dataset,342

{f ,m,p}, consisting of 36 audiovisual pieces. Each piece343

has a different length. To meet the training requirement,344

each piece was split into audiovisual segments, each of345

which has empirically-chosen 128 frames (about 4 seconds).346

Finally, the dataset includes a total of 108,372 audiovisual347

segments, denoted as S = {f128×768,m128×188,p128×9}.348

4 MUSIC-TO-MOTION GAN349

The goal of our approach is to automatically synthesize350

realistic upper body motion, including torso motion, head351

motion, arm motion, and finger motion, based on a Guzheng352

music as the given input.353

Our music-to-motion model is a GAN-based framework,354

illustrated in Figure 4. Specifically, an animation generator355

G is built to synthesize upper body motion sequences356

m̃ ∈ R128×188 from the spectrogram features of the input357

Guzheng audio, f ∈ R128×768. Furthermore, the audio spec-358

trogram f is separately concatenated with the real motion359

sequence m and the synthetic motion sequence m̃ to form360

two tuples: {f, m̃} ∈ R128×956 and {f,m} ∈ R128×956. A361

discriminator D is designed to determine whether {f, m̃}362

and {f,m} is real or fake. G and D are CNN-based neural363

networks where one-dimensional convolutions are utilized364

over the audio spectrogram ft or the motion mt and carried365

out along with the time dimension t. In the training, G366

produces realistic upper body motions as much as possible367

to fool D. Meanwhile, D is updated to correctly distinguish368

the synthetic tuple {f, m̃} from the real tuple {f,m}. G is369

trained under the supervision of D. This adversarial train-370

ing process aims to enforce the synthetic joint movements371

m̃ more realistic and natural. The details of our framework372

are described in the remainder of this section.373

To refine the generated animation, G is supervised by374

two regression losses and a GAN loss. The regression losses375

govern both the rotations of the joints and the positions of376

the end-joints, and they are designed to make the synthetic377

animation as close to the real data. The GAN loss performs378

via a pyramid discriminator, which is designed to prevent379

the resultant animation falling into the mean value and to380

enforce the generated animation follows the distribution of 381

the real motion. The combination of the regression losses 382

and GAN loss is able to ensure the generated motion more 383

natural and realistic. 384

4.1 Data Augmentation 385

In general, training a deep learning framework requires a 386

large amount of data. Considering the limited amount of 387

our recorded music/motion data and the generalization 388

of the generator for various music inputs, we carry out 389

a data augmentation step by expanding the diversity of 390

the input music and by slightly stretching/shrinking the 391

simultaneously recorded music and motion data. 392

Stretching and shrinking audiovisual data. A piece 393

of music may be played relatively fast or slow. To satisfy 394

the requirement of differential music speeds, the recorded 395

music and motion data are slightly stretched or shrank si- 396

multaneously. Our experiments found that too much scaling 397

would negatively affect the result because the musician’s 398

upper body could move differently when s/he plays music 399

at different music tempos. For example, when fast-tempo 400

music is played, the arm’s action space is relatively small; in 401

contrast, while slow-tempo music is played, the arm’s action 402

space could be relatively large, which cannot be achieved 403

by simply stretching the motion in the temporal dimension. 404

By randomly sampling the scaled music and motion to the 405

Audition software, we can find a suitable scaling factor. 406

To maintain the quality of both the resultant music and 407

motion, we use a scaling factor between 0.75 and 1.25 for 408

shrinking and stretching, respectively. We use a constant- 409

speed adjustment method for music; we stretch or shrink 410

the motion data using the cubic Spline Interpolation [79]. 411

4.2 Generator: Mapping from Audio to Body Motion 412

The upper body motion generator in this work aims to 413

map the spectrogram features of Guzheng music to the 414

joint angles of the upper body (represented by quater- 415

nions). Our generator is based on a U-shaped deep neural 416

network, as illustrated in Figure 5. In the down-sampling 417

layers, 4 1D residual blocks and 4 max pooling layers are 418

employed. Each 1D residual block is followed by a max 419
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Fig. 5. Pipeline illustration of the Music-to-Motion generator in this work.

pooling layer. The 1D residual block and the max pooling420

layer are repeated alternately to extract long-range temporal421

contextual information and high-level abstract information422

from the input audio. The output of each max pooling layer423

is denoted as a down-sampling feature map. Along with424

the down-sampling operations, multi-scale down-sampling425

feature maps are also obtained.426

To improve the performance of the generator, we use427

attention blocks (AttB in Figure 5) and “upsample + 1D428

conv” layers. The attention blocks manipulate the temporal429

weights to control the flow from the down-sampling layers430

to the up-sampling layers. “upsample + 1D conv” layers are431

used to avoid the problem of checkerboard artifacts [80].432

In the up-sampling layers, 5 1D residual blocks and 4433

“upsample + 1D conv” layers are applied to compute the434

quaternion sequence of each upper body joint. Each of the435

first four 1D residual blocks is followed by one “upsample436

+ 1D conv” layer. The output of each “upsample + 1D437

conv” layer is denoted as a up-sampling feature map. Along438

with the up-sampling operations, multi-scale up-sampling439

feature maps are obtained. In particular, the down-sampling440

and up-sampling feature maps with the same scales in those441

symmetric layers are fused as the input to the 1D residual442

blocks in the up-sampling path. The fusion is done by con-443

catenating the up-sampling feature map and the weighted444

down-sampling feature map. The weights are calculated445

through an attention block.446

The up-sampling feature map of the 5-th 1D residual447

block is fed into a linear transformation on the feature448

channels through a convolutional layer (kernel size is 1,449

stride is 1) to fit the dimension of the motion m. Then, a450

normalization operation is performed on the feature map to451

satisfy the rotation constraint.452

1D residual blocks. Our 1D residual block (ResB) con-
sists of two paths: a residual path and an identity mapping
path. Its structure is illustrated in Figure 6. In the residual
path, 1D convolutional layer, the BN operation [81] and relu
function [82] are stacked to extract non-linear features. In
the identity mapping path, a 1D convolutional layer (kernel
size is 1, stride is 1) is used to make the channel size the

1Dconv+BN+ReLU
conv_1

input

output

1Dconv+BN+ReLU

Identity path Residual path

Add

1Dconv+BN+ReLU
conv_1

input

output

1Dconv+BN+ReLU

Identity path Residual path

Add

Fig. 6. Schematic illustration of the used Residual block (abbreviated as
Res block or ResB).

same as that of the residual path. The results from both the
residual path and the identity mapping path are added as
the output of the 1D Residual block. Our 1D residual block
can be represented as

xl+1 = I(xl, θi) +R(xl, θr), (1)

where xl, xl+1 are the input and output of the lth 1D 453

residual block; I represents the identity mapping path; R 454

denotes the residual path; θi and θr are the parameters of 455

the two paths respectively. Our 1D residual block design 456

has the benefits of both reducing the training loss and im- 457

proving the performance, which is described in our ablation 458

experiments (refer to Section 5.) 459

Upsample + 1D conv. In the up-sampling layers of the 460

generator, deconvolutional layers generally cause the prob- 461

lem of checkerboard artifacts [80] due to uneven overlapped 462

placement of each deconvolutional pattern. This always 463

leads to the motion jittering of the joints. Inspired by the 464

work of [80], we employ linear interpolations to enlarge 465

the hidden features, which avoids the uneven overlapped 466

pattern placement in the deconvolution. Moreover, a 1D 467

convolutional operation with the BN and relu operations 468

[81], [82] are followed by the enlarged hidden features 469

to perform a non-linear feature mapping. The “upsample 470

+ 1D convolutional” layers contribute to the generation 471
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of more natural motion than the deconvolutional layers.472

Figure 7 shows several comparison examples of the motion473

trajectories generated with the deconvolutional layers and474

the “upsample + 1D convolutional” layers. As shown in this475

figure, the “upsample + 1D convolutional” layers can gen-476

erate smoother motion trajectories than the deconvolution477

layers.478

Fig. 7. Comparisons of the generated motion trajectories in 3D space.
The red and blue trajectories are generated with the deconvolution and
“upsampling + convolution“ layers, respectively, in the decoder.

Attention blocks. The attention block (AttB) [14] is used479

to control the flow of the down-sampling feature maps fd480

into the concatenation with the up-sampling feature maps481

fu that have the same scale. The schematic illustration of482

the AttB is illustrated in Figure 8. AttB outputs fd that is483

weighted along with the temporal dimension. The weights484

are computed by first mapping fd and fu to the same hidden485

feature space with two linear transformation matrix Wd and486

Wu, respectively; then by fusing them through an element-487

wise addition; and finally by feeding the summation into488

a stack of a non-linear function of relu, a convolutional489

layer (kernel size is 1, stride is 1) and a sigmoid function.490

The down-sampling feature map is element-wise multiplied491

with the weights in the temporal dimension as the output492

of the AttB, described in the following equation (2).493

o = fd · σ(conv(relu(WT
d fd +WT

u fu))), (2)

where o denotes the output of the AttB, and Wd and Wu494

are the linear transformation matrices for fd and fu, respec-495

tively. Our attention block design has the benefits of both496

highlighting the salient latent features and suppressing the497

irrelevant parts of the latent features.498

Wd

Wu

conv_1

Relu

Add
Multiply

Fig. 8. Schematic illustration of the Attention block (AttB).

4.3 Discriminator: Multi-scale Patch Discrimination 499

A multi-scale patch discriminator, D, is designed to super- 500

vise the training process of the generator. It contributes to 501

refine the realistic movements of the upper body joints. It is 502

illustrated in Figure 9. It consists of four sub-discriminators, 503

denoted as D = {D1, D2, D3, D4}. Di, i = 1, 2, 3, 4 is 504

a patch discriminator [15] with the multi-scale receptive 505

fields of 1 for D1, 12 for D2, 48 for D3 and 128 for D4. 506

The multi-scale receptive fields govern the output of the 507

generator at different scales and help to refine the output 508

motion trajectories. Di consists of multiple convolution 509

layers, each of which is built with a 1D convolution layer, 510

batch normalization, and the reLu activation function. In 511

our work, the numbers of the neural layers in {Di} are 512

different: 4 layers for D1, 3 layers for D2, 5 layers for D3, 513

and 5 layers for D4. Each Di outputs the binary probability 514

distribution of true or false, denoted as pi. The average value 515

of {pi}, i = 1, 2, 3, 4, is considered as the output of D, the 516

final probability distribution of true or false. 517

4.4 Loss Functions 518

In the training process, the generator is supervised with 519

three loss functions: the joint rotation loss Ljr, the end- 520

effector position loss Lejp, and the GAN loss LGAN ; and 521

the discriminator is supervised only with LGAN . 522

We first consider Ljr in our experiments, since Ljr 523

contributes to govern the accuracy of all the joints. However, 524

using Ljr alone would easily cause inaccurate positions 525

of the end-effectors, due to the accumulated errors in the 526

forward kinematics process. This also means that the joints 527

closer to the root typically have a greater impact on the 528

positions of the end-effectors. To solve this issue, we add 529

an extra loss Lejp to constrain the positions of the end- 530

effectors. Lejp has influence on all the joints due to the 531

fitting of the joint probability distribution of all the joints. 532

The GAN loss LGAN has the benefits of both encouraging 533

high-frequency details [15] and synthesizing realistic upper 534

body motion due to the joint modeling of motion and music 535

signals. So we add LGAN in our design. We detail the three 536

loss functions below. 537

Joint rotation loss. Ljr is the L1-norm distance between
the synthetic joint rotation sequence m̃128×9 and the real
joint rotation sequence m128×9, computed as:

Ljr = ‖m− m̃‖1 . (3)

End-effector position loss. To guarantee the hands to 538

touch the Guzheng instrument and the plausible position 539

of the head, the end-effector position loss, Lejp, is de- 540

signed. Lejp computes the distance between the synthetic 541

and real positions of the three end-effectors. Specifically, the 542
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Fig. 9. Schematic illustration of the multi-scale patch discriminator.

differentiable forward kinematics (FK) algorithm and the543

quaternion representations of the joint rotations are utilized544

to compute the positions of the end-effectors, as follows.545

Lejp = ‖p− FK(m̃)‖1 , (4)

where p128×9 is defined in Section 3.2 and it refers to the546

ground truth positions of the end-effectors; FK(.) denotes547

the iterative forward kinematics function and it estimates548

the 9-dimensional (two hands and the head) end-effector549

positions for 128 frames according to a synthetic joint rota-550

tion sequence m̃.551

GAN loss. The GAN loss is formulated as:

LGAN = min
G

max
D

FGAN , (5)

where:

FGAN =
1

4

4∑
i=1

Em,f [logDi({f,m})]

+
1

4

4∑
i=1

Em̃,f [log(1−D({G(f), f}))] .
(6)

Our final objective function is computed as:

G∗ = argmin
G

(LGAN + λjrLjr + λejpLejp), (7)

where λjr and λejp are the weights for the joint rotation loss552

Ljr and the end-effector position loss Lejp, respectively. In553

our experiments, both λjr and λejp are set to 100.554

4.5 Implementation Details555

In our experiments, the training process was split into two556

alternate steps. At step 1, the generator G was trained557

with the regression loss functions only (including the joint558

rotation loss Ljr and the end-effector position loss Lejp),559

while the discriminator D was kept without any update.560

At step 2, D was trained with not only Ljr and Lejp but561

also the GAN loss LGAN . Meanwhile, LGAN was used to562

train the discriminator D. In our experiments, we trained563

the generator through 150k iterations at step 1, and then 564

use the GAN loss at step 2 through 40k iterations. The 565

learning rate was set to 0.0001, and the batch size was 566

set to 128. The Adam solver [83] was used to optimize 567

the network parameters. All the models were implemented 568

using PyTorch [84]. Since our model uses a full-convolution 569

network, the network can be adapted to any length of time 570

during the animation generation. 571

5 EXPERIMENT RESULTS AND EVALUATIONS 572

To evaluate our approach, we conducted both quantitative 573

and qualitative evaluations. In this section, we first describe 574

various baseline methods used in our evaluations, and then 575

describe the quantitative result and qualitative evaluation 576

(via a user study). 577

Baselines. The baseline methods in this work include 578

the LSTM network [9], the CNN forward network [36], 579

the CNN and LSTM combination network [42],the TCN 580

network [71], the Unet network [12], and the R2Unet net- 581

work [85]. Particularly, the CNN forward network baseline 582

is inspired by [36] and ignores the emotional state input 583

layer used in [36]; and the CNN and LSTM combination 584

baseline [42] was proposed to generate 3D facial animations, 585

where CNN is used to extract abstract audio features in 586

each frame and LSTM is applied to model the temporal 587

relation between frames. Additionally, as the generator in 588

our model is an extension of the Unet network, we take the 589

Unet network as a baseline; Further, a latest extension of 590

the Unet called R2Unet, short for Recurrent Residual Unet 591

[13], is also considered as a baseline in this comparison. It 592

benefits from the advantages of a residual structure and a 593

convolution recurrent network [86]. 594

Ablation study design. To look into the contribution 595

of each major module in our framework, we conducted 596

an ablation study to investigate the contributions of the 597

Res block, the Attention block, and the GAN framework. 598

Therefore, three framework conditions are defined: MGAN
599

is the proposed generator trained with both the joint rotation 600

loss and the end-effector position loss but without the GAN 601
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Fig. 10. Some frames of synthetic results by different versions in our ablation study.

loss; differing from the proposed framework,MAtt fuses the602

downsampling and upsampling layers with the concatena-603

tion operation instead of the attention block; MRes takes the604

convolutional layers in the downsampling and upsampling605

paths to replace the Res blocks in the proposed framework.606

To have a fair comparison among all the methods, we607

maintain the consistency of the input and output features608

when comparing the baselines and our method. The inputs609

are audio spectrogram features and the outputs are the610

joint rotations of the upper body. All of the methods were611

uniformly trained on the augmented dataset (described in612

Section 4.1).613

5.1 Quantitative Evaluation614

We used quantitative measures, including the test loss, Dy-615

namic Time Warping distance (DTW) [87], and the Longest616

Common Subsequence similarity (LCS) [88], to compare our617

method to the baselines. Specifically, the test loss, DTW618

distance and LCS similarity compute the skeletal joint tra-619

jectory distance between the generated motion sequence620

and the ground truth motion sequence on the test data.621

Table 1 shows the averages of the test loss, DTW distance622

and the LCS similarity on the test data. A lower test loss623

indicates that the method has a better capacity of modeling624

the temporal relationship between the audio channel and625

the motion channel in the data; a lower DTW distance or a626

higher LCS similarity indicates the generated animation is627

closer to the ground truth (motion capture data).628

Results. As mentioned in Section 3.2, the collected au-629

diovisual dataset S consists of 108372 segments. In each630

experiment, 80% (86697) segments are randomly selected as631

the training data and the rest 20% (21675) ones are taken as632

the test data. The quantitative results are reported in Table633

1, referring to the averages of 30 experiments.634

As shown in this table, our method outperforms all the635

baseline methods in terms of both the DTW distance and636

the LCS similarity. Furthermore, our method achieves a637

smaller test loss and a smaller DTW distance than MGAN ,638

MAttB and MRes; Also, our method achieves a higher LCS639

similarity than MGAN , MAttB and MRes. In other words,640

TABLE 1
Quantitative comparision among our method, the baselines, and the

ablation study versions. The used quantitative metrics include the
average of test loss, DTW distance (DTW, ×10e4) and LCS similarity

(LCS) on the test data. The check marks refer to the employed
operations in the method.

Model Test Loss DTW LCS

Baselines

LSTM [9] .0608 .3534 .0561
CNN [36] .0390 .2556 .1045

CNN+LSTM [42] .0632 .2687 .1070
TCN [71] .0438 .2593 .1033
Unet [12] .0184 .2304 .1218

R2Unet [85] .0376 .3186 .0999
Music2Body [70] .0296 .2543 .1178

Ablation
Study

ResB AttB GAN
MGAN √ √

.0138 .2032 .1314
MAtt √ √

.0132 .2046 .1325
MRes √ √

.0179 .2057 .1330
Ours

√ √ √
.0118 .2016 .1358

our method performs better than all the ablation study 641

versions, which implies that each of the supervision of the 642

discriminator in the GAN framework, the Res block, and 643

the attention block makes a positive contribution to the 644

overall performance of our method. Figure 10 shows the 645

synthetic results of each block. The vanilla Unet produces 646

playing motions with invalid gestures and temporal jitter 647

occasionally (the first row). The attention block removes the 648

invalid gestures but still retains the temporal jitter (the sec- 649

ond row). The Res block removes both the invalid gestures 650

and temporal jitter while sacrifices the magnitude of action 651

(the third row). The GAN framework leads to larger motions 652

to improve the naturalness (the fourth row). 653

In order to evaluate the effectiveness of the data augmen- 654

tation in our method, we compared the performances of our 655

method with and without the data augmentation. Figures 11 656

and 12 illustrate the training loss, along with the number of 657

training iterations, achieved by our method with and with- 658

out the data augmentation, respectively. From Figure 11, we 659

can see that in the initial stage of training, the training loss is 660

reduced more slowly by our method with the data augmen- 661
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tation than by our method without the data augmentation.662

However, as the training progresses, our method with the663

data augmentation achieves noticeably smaller training loss664

than our method without the data augmentation. Now if we665

look into the validation loss comparison in Figure 12, we can666

see that our method with the data augmentation achieves667

a substantially smaller validation loss (on the test dataset)668

than our method without the data augmentation. The above669

results provide solid evidence that the data augmentation670

step (Section 4.1) substantially improves the generalization671

ability of our model.672

Fig. 11. Comparison of the effect of data augmentation on the training
loss in the training stage. “Aug” represents “with data augmentation”,
and “noAug” represents “without data augmentation”.

Fig. 12. Comparison of the effect of data augmentation on the validation
loss. ‘Aug” represents “with data augmentation”, and “noAug” represents
“without data augmentation”.

Table 2 shows the average of test loss, DTW distance673

and LCS similarity, when our method includes data aug-674

mentation or does not include data augmentation. The675

results show that the case w/ data augmentation results676

in a smaller test loss (0.0184 vs. 0.0280), a smaller DTW677

distance (230.4361 vs. 240.2176) than the case w/o data678

augmentation. In terms of the average LCS similarity, the679

case w/o data augmentation is very slightly higher (ap-680

proximately 0.03%) than the case w/ data augmentation.681

Actually, their results are very close to each other (0.8782 vs.682

0.8799). The results in Table 2 further confirm that the data683

TABLE 2
Comparison of the quantitative measures for the cases w/ data

augmentation and w/o data augmentation. All the numbers reported in
this table are achieved after 50,000 iterations.

Model Test Loss Avg. DTW Avg. LCS
w/o data augmentation 0.0280 240.2176 0.8799
w/ data augmentation 0.0184 230.4361 0.8782

augmentation step positively contributes to the performance 684

of our method. 685

Fig. 13. The average scores and standard deviations of all the compari-
son methods in the user study in terms of the matching perception.

Fig. 14. The average scores and standard deviations of all the compari-
son methods in the user study in terms of the naturalness perception.

5.2 User Study 686

We conducted an online user study to compare our method 687

with the aforementioned baseline methods (i.e., LSTM, 688

CNN, CNN+LSTM, Unet, R2Unet) and the ground truth 689

data (abbreviated as “gt”). In other words, a total of 7 690

different methods (or called conditions) were compared. 691

Specifically, we randomly selected two recorded Guzheng 692

music pieces in the test data. The two music pieces last 693

27 seconds and 31 seconds, respectively. Then, we used 694

the 7 different methods to generate corresponding character 695

animations based on the 2 Guzheng music inputs. To this 696

end, we generate a total of 14 Guzheng-playing video clips 697

(2 × 7 = 14) for our user study, and we also created an 698

online website for participants to view and rate them. To 699

counterbalance the potential influence from the clip order, 700
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Fig. 15. Snapshots from the generated and ground truth (motion caption) animation trajectories accompanied with the same music.

TABLE 3
The results of the paired Mann-Whitney U test for the obtained matching scores and naturalness scores by all the methods.

ours ground truth
matching naturalness matching naturalness

LSTM [9] U = 5049.0; p = 4.96e-37 U = 1754.5; p = 1.22e-55 U = 1916.0; p = 1.93e-22 U = 457.5; p = 2.32e-37
CNN [36] U = 1986.5; p = 2.61e-52 U = 4586.0; p = 8.00e-42 U = 828.0; p = 8.64e-33 U = 824.0; p = 3.46e-33
CNN+LSTM [42] U = 3868.0; p = 8.64e-52 U = 3138.0; p = 3.24e-48 U = 1460.0; p = 2.24e-26 U = 729.5; p = 1.84e-34
Unet [12] U = 17140.5; p = 3.93e-3 U = 14702.0; p = 3.86e-7 U = 5330.5; p = 2.06e-3 U = 2741.0; p = 7.94e-17
R2Unet [85] U = 4535.0; p = 2.03e-39 U = 3315.0; p = 6.09e-47 U = 1848.5; p = 2.80e-23 U = 820.5; p = 3.13e-33
ground truth U = 18279.0; p = 5.25e-2 U = 11483.5; p = 1.17e-14 - -
ours - - U = 18279.0; p = 5.25e-2 U = 11483.5; p = 1.17e-14

we randomly select and display video clips for each partici-701

pant.702

58 participants aged 20-45 years were invited to partic-703

ipate in our user study. Their average age is 32.12 and the704

standard deviation is 6.20. Four volunteers are professional705

music artists and the rest are amateurs in Guzheng. After706

watching each video clip, they were instructed to use a 5-707

point Likert scale to rate the matching between music and708

animation and rate the naturalness of the animation. Before709

the experiment starts, they were instructed that the “match-710

ing” refers to the synchronization between the played music711

and animation, and the “naturalness” refers to the quality of712

the visual animation.713

Furthermore, they were particularly instructed to ignore714

minor visual artifacts (errors) from the inaccurate positions715

of the fingers that touch the instrument, since the size and716

position of the virtual Guzheng instrument are not the same 717

as those of the real Guzheng instrument used in our data 718

recording step and also the collected finger motions have a 719

low accuracy (as mentioned in Section 3.1). Each participant 720

took about 25 to 30 minutes to complete the user study. 721

Figure 13 and Figure 14 show the average scores and 722

standard deviations of the ratings obtained by all the meth- 723

ods, in terms of the perception on matching and naturalness, 724

respectively. As clearly observed in the two figures, our 725

method can soundly outperform all the baseline methods in 726

terms of both the matching and naturalness. Compared to 727

the ground-truth data (the “gt” case in the two figures), the 728

averaged ratings obtained by our method are not good as 729

but reasonably close to the ground-truth animation (driven 730

by the recorded motion capture data), in terms of both 731

matching (3.93 vs. 4.02) and naturalness (3.95 vs. 4.49). 732
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Fig. 16. Snapshots of the virtual character and a real musician playing the same music. The music in the musician video is extracted as input to our
music-to-body generator and then the generated animations are used to drive the virtual character.

Based on the obtained user rating data, we also per-733

formed paired Mann-Whitney U test [89] between different734

conditions. The statistical results are shown in Table 3 (for735

the matching perception and naturalness perception). As736

shown in Table 3 and two figures (Figure 13 and Figure737

14), our method outperform all the baseline methods in a738

statistically significant way, in terms of the perception of739

both matching and naturalness. On the other hand, in terms740

of naturalness, our method is still significantly inferior to the741

ground-truth motion data. This indicates that there is still742

room for our method to improve to produce more realistic743

and natural Guzheng-playing animations.744

In order to show the qualitative results conveniently,745

we employ a professional technical artist to build a virtual746

character. Figure 15 shows the comparison of some selected747

frames from the animations generated by our method and748

from the generated ground-truth animations (driven by749

recorded motion capture data). Figure 16 shows the compar-750

ison of some selected frames from the animations generated751

by our method and from the recorded ground-truth video752

of Guzheng-playing (acquired in our data capture stage). As753

shown in the two figures, the results by our method are visu-754

ally similar to the ground truth (both the generated ground-755

truth animation and the recorded ground-truth video). For756

the generated animation results in this user study, please757

refer to the supplemental demo video.758

6 DISCUSSION AND CONCLUSION 759

In this paper we present a novel GAN-based framework 760

to learn the temporal relationship between Guzheng music 761

and the upper body motion of Guzheng-playing. Given 762

novel Guzheng music as the input, our trained model can 763

automatically generate the corresponding natural and real- 764

istic Guzheng-playing character animations. Specifically, at 765

the training step, besides a multi-scale patch discriminator, 766

we also propose a music-to-motion generator that is super- 767

vised with both the joint rotation loss and the end-effector 768

position loss on top of the conventional GAN loss. In addi- 769

tion, attention blocks and “upsample+1D conv” layers are 770

also designed to refine the generated motion trajectories. 771

For this work, we specifically capture a large scale, 772

Guzheng-playing audiovisual dataset using our in-house 773

motion capture setup. We also introduce a novel data 774

augmentation step to increase the generalizability of our 775

dataset and thus our trained model. The effectiveness of our 776

proposed data augmentation was validated by our quanti- 777

tative evaluation. We plan to release this unique audiovisual 778

dataset for research purpose in the research community after 779

the work is published. 780

We also conducted extensive studies, including both 781

quantitative and qualitative (via a user study) experiments, 782

to compare our method with five state of the art methods 783

as well as the ground-truth animation. Our results validate 784

that our method can outperform all the five state-of-the- 785

art methods in a statistically significant way. Also, via an 786
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ablation study, we confirm that each of our modules (i.e.,787

the data augmentation, the Res blocks, the attention blocks,788

and the GAN-based module) makes a positive contribution789

to the overall performance of our method.790

Our current approach only utilizes the recorded data of791

a single artist. In the future, we plan to record Guzheng-792

playing data of more artists, and then design effective al-793

gorithms to model artist-specific styles of Guzheng-playing794

and also to create new styles by smoothing transferring795

from one artist-specific style to another. We will improve796

the recording pipeline of finger motions and augment the797

accuracy of the recorded finger motions, to synthesize high-798

quality finger playing animations. Moreover, due to the799

gaps in scale and position between the virtual and the real800

musical instruments, the mocap and generated data cannot801

reflect a good performance on touching the instrument. To802

address this issue, we plan to make efforts on developing a803

new animation generation which is adaptive to the virtual804

instrument. In addition, we will collect and release other805

audiovisual data playing other musical instruments for806

the academic community and explore many widely-open807

research problems regarding the motion of other musical808

instrument-playing, e.g., a unified framework of synthesiz-809

ing playing animations for various musical instruments.810
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