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Abstract Well-designed indoor scenes contain interior
design knowledge, which has been an essential prior for
most of indoor scene modeling methods. However, the layout
qualities of indoor scene datasets are often uneven, while
most of existing data-driven methods do not differentiate
indoor scene examples in terms of their qualities. In this
work, we aim to explore an approach that leverages datasets
with differentiated indoor scene examples for indoor scene
modeling. Our solution is to conduct subjective evaluations
on lightweight datasets that have various room configurations
and furniture layouts, via pairwise comparisons based on
the fuzzy set theory. We also develop a system to use
such examples to guide indoor scene modeling according to
user-specified objects. Specifically, we focus on object groups
associated with certain human activities, and define room
features to encode the relations between the position/direction
of an object group and the room configuration. Given an
empty room, our system first assesses it in terms of the
user-specified object groups, and then places the associated
objects in the room guided by the assessment results thus
completing indoor scene modeling. A series of experimental
results and comparisons with the state-of-the-art indoor scene
synthesis methods are presented to validate the usefulness
and effectiveness of our approach.

Keywords Indoor scene modeling, modeling by examples,
fuzzy measurement, membership degree

1 Introduction
The problem of indoor scene modeling has been extensively
studied in the past decades. From the early guideline-based
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Fig. 1 The workflow of our method, includes the datasets (a), input
room and activity labels (b), pre-room assessment results (c), and
the synthesized scene based on the assessment (d).

approaches [1, 2] to example-based approaches [3, 4], as
well as the latest activity-centric methods [5–9] and deep
learning models [10, 11], their capability advances steadily in
generating visually pleasing and functionally-valid 3D indoor
scenes that benefit many applications including games and
interior design.
To obtain plausible indoor layouts and object arrangements,

most of existing indoor scene modeling approaches rely on
either expert-designed guidelines or examples. For data-driven
methods, large-scale datasets of indoor scenes could improve
the quality of the synthesized scenes as a result of abundant
examples. However, the layout qualities of the indoor scene
examples in large-scale datasets may not be at the same level.
Due to the lacking of metrics to evaluate the quality of indoor
scenes based on the associated functionalities, low-quality
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examples have the same weights as high-quality ones for
indoor scene modeling in most existing methods. Intuitively,
indoor scenes with different qualities, called differentiated
examples in this work, should play different roles in indoor
scene modeling, i.e., the impacts of high-quality examples
should be enhanced while the others should be weakened.
To address the above issues, methods that exploit

differentiated examples for indoor scene modeling need to be
investigated. We observe that the layouts of high-quality
indoor scenes typically well support their assumed
functionalities. Even for rooms with specially-designed
layouts, their furniture layouts can still have some common
relations to the room configurations including room size and
shape, positions of windows, positions of doors, etc. For
example, since a TV set is rarely placed in front of a window,
the layout of an object group with a TV set, a couch, and a
tea table could be influenced by the window positions in a
room. These observations motivate us to exploit the common
layout relations as the metrics to differentiate examples in
the datasets. Besides handling a variety of room layouts,
the evaluation metrics need to be also associated with object
functionalities. Therefore, examples in an ideal interior design
dataset should have the following: i) they can be classified
into functionality-associated object groups; ii) they include
differentiated layout examples and the associated evaluations;
and iii) they include sufficient layout variations to support
generality and robustness.
In this paper, we propose a new method that uses datasets

with differentiated samples as priors for room assessment,
and then further use the assessment results to generate indoor
scenes. The collected differentiated samples have various
room layouts with respect to certain object groups. Since
quantitative analysis on indoor scenes is challenging, we
leverage fuzzy measures and subjective comparisons to
evaluate the layout quality of the differentiated samples.
Specifically, we adopt the membership degree, a concept
borrowed from the fuzzy set theory [12, 13], to evaluate the
samples in the dataset after we conduct pair-wise comparisons
on the samples. For example, in Figure 1, our method collects
differentiated examples of indoor scenes to facilitate indoor
scene modeling (a). Given input rooms and the assigned
activity labels representing certain object groups (b), our
method uses differentiated examples, which have been labeled
with evaluation scores during the subjective evaluation, to
conduct the per-room assessment (c). Specifically, we first
calculate the weighted feature distances of different room
features between the input room and dataset scenes. Then the
given room can be assessed via transferring the membership

degrees of the differentiated examples based on their room
feature distances, with respect to a certain object group. Since
the assessment is performed for all positions in the given
roomwith four different directions of the object group, we can
place the object group into the room based on the assessment
results thus synthesizing 3D scenes with plausible indoor
layouts (d). Moreover, we provide an ease-of-use tool to assist
users to design indoor scenes. It also allows users to merge
multiple rooms into a larger and more complex scene.
In sum, our work makes two novel contributions: i) a novel

metric to assess indoor scenes through differentiated examples
in a dataset, based on the fuzzy set theory, and ii) a framework
to model indoor scenes based on the room assessment with
respect to certain groups of objects. We demonstrate the
advantages of our method for indoor scene synthesis through
various experiments, as well as direct comparisons with
state-of-the-art, data-driven indoor scene synthesis methods
[8, 10, 14].

2 RELATED WORK
Many systems and approaches for indoor scene modeling
have been proposed in the past decades. The first task
is to understand and describe contextual scenes and their
hierarchical structures. For example, data-driven methods,
which encode semantic scene structures from existing indoor
scene examples, have been well studied in recent years (e.g.,
[15–17]). The co-existence and hierarchical relations of indoor
objects have often been used to describe indoor scene contexts,
e.g., Xu et al. [18] proposed to cluster a set of co-existing object
groups, called focal points, in order to organize a collection
of heterogeneous indoor scenes. Liu et al. [19] proposed to
use probabilistic grammars for hierarchical decomposition
of a scene into semantic components. Zhang et al. [20]
proposed to learn discrete priors to accurately represent
exact layout patterns, by measuring the strengths of spatial
relations of indoor objects based on tests for complete spatial
randomness (CSR). Moreover, some works also leverage
action or even natural language to establish the object relations
of indoor scenes (e.g., [21, 22]). In recent years, deep learning
techniques have been successfully adopted for contextual
scene understanding. For example, Li et al. [14] presented
GRAINS, which encodes information about objects’ spatial
properties, semantics, and their relative positioning with
respect to other objects in a hierarchy using a variational
recursive autoencoder (RvNN-VAE), trained on a dataset
of annotated scene hierarchies. The analyzed scene context
information benefits indoor scenemodeling and can be used as
constraints to determine object categories and locations inside
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a synthesized scene[23–25]. Such priors of object relations
can also be used in interactive indoor scene modeling systems
(e.g., [26]). In our work, for simplicity, the relationships
within a group of objects for a certain activity are pre-defined,
so that we can focus on how to place the objects into the given
room in terms of their associated activity.
On the other hand, how to evaluate the quality of indoor

scenes is a challenging yet widely-open problem. Analyzing
the effect of indoor environmental factors on subjective
human perception is a long-standing topic in both architecture
and environmental psychology. In general, some major
environmental factors, including illumination, air quality,
temperature, noise, and space, are utilized to measure the
quality of an indoor environment [27]. Researchers have
revealed that indoor environment can impact the comfort
and cognitive performance of human beings, and there exist
acceptable ranges to keep people comfortable [28]. Thus, a
task to explore proper environmental factor ranges is then
raised for indoor scene design. For example, Konis [29]
provided a system to predict the visual comfort of indoor scene
core zones, based on high dynamic range images that capture
the indoor illumination. Ochoa and Capeluto [30] proposed
a similar analysis on indoor illumination with simulated
indoor environments to evaluate visual comfort. In our work,
we extract expert knowledge from datasets of differentiated
indoor scene examples. The evaluations on the differentiated
examples are through subjective comparisons, and we use the
evaluation results, i.e., the fuzzy membership degrees, as the
assessment scores to label the indoor scenes in our datasets.
These examples are used to assess input rooms for placing
certain object groups.
Based on various scene representations, a large number of

indoor scene synthesis methods have been proposed. Most
of these works rely on pre-defined guidelines or relations
learned from 3D scene datasets (e.g., [1, 2]). To increase
the efficiency of indoor scene synthesis, some works adopt
example-driven methods to transfer interior design styles from
existing indoor scenes [4], or indoor images [3] to a given
room. Human-centric approaches provide another way to
make indoor scene synthesis more automated. Jiang et al. [5]
proposed to use human context for object arrangement by
learning how objects relate to human poses. Fisher et al. [6]
proposed to generate 3D scenes given noisy and incomplete
3D scans, by arranging objects based on certain activities.
Savva et al. [7] proposed to learn a probabilistic model to
connect human poses and the arrangement of object geometry,
for jointly generating 3D scenes and interaction poses. These
works motivate us to gather certain activity-related objects

into groups, and place such a group into the given room as a
whole. More specifically, our work relies on methods such
as [7] to determine the relevant object positions/directions in
a group (e.g., a group of the couch, tea table, and TV set).
Our method focuses on the next task, i.e., how to place such
a group in a given room. Different from the human-centric
methods (e.g., [5, 6]) that directly measure the probability of
various activities on a certain region in a room, we leverage
the subjective experiments and fuzzy metrics to evaluate
the dataset indoor scene examples with respect to certain
activities. We adopt a data-driven strategy that uses the
dataset indoor scenes weighted by the fuzzy metrics to guide
the scene synthesis.
Some recent works tackle large-scale interior design by

utilizing deep neural networks for indoor scene synthesis.
For example, Wang et al. [10] employ a deep convolutional
neural network to learn priors from a large-scale indoor
scene database for indoor scene synthesis. Zhang et al. [31]
proposed a generative model using a feed-forward neural
network that maps a prior distribution like normal distribution
to the distribution of primary objects in indoor scenes. This
work focused on the 3D object arrangement representation
within a group of objects. Our work focuses more on the
global layout of object groups in a given room, so the local
arrangement for objects in a group can be pre-assigned. We
also consider the relations between the layout of a certain
object group and the room configuration, aiming to create
scenes more suitable for performing certain human activities.
To describe such relations, we define the room features in
terms of the environment-related components like windows
and doors. Moreover, comparing to these deep-learning-based
methods, our method does not rely on a large-scale indoor
scene dataset.

3 Data Preprocessing
In this section, we first introduce how to construct
differentiated scene datasets and the room features we adopt,
and then we give the details on how to label the scenes in the
datasets through fuzzy-based subjective comparisons.

Scene data collection and representation. To verify the
usability of differentiated examples as priors for indoor scene
modeling, we collect lightweight datasets in which each scene
example only has one object group, so that each type of indoor
scene dataset is associated with a single group of objects.
Namely, scenes in the same dataset have the same kind of
object group. Considering the object groups are generally
associated with certain activities, we choose the activity name
as the object group label in the user interfaces of our system.
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Fig. 2 Object groups and the associated agents with respect to
various activities.

Fig. 3 Examples of dataset scenes with different room configura-
tions or furniture layouts.

To establish the relations between room configuration and
furniture layout, we first normalize the sizes of the objects,
based on a human agent with a fixed body size. Then set
the human agent on the object group to represent its front
direction and position. Note that, for the given room, the user
could specify multiple activity labels to generate an indoor
scene with more than one object group. As a preliminary
attempt, we only focus on six types of common object groups.
As shown in Figure 2, each object group is associated with a
certain activity including lying and watching TV (a), sitting
and watching TV (b), working at home (c), having dinner (d),
conferencing (e), and working in office (f).
For each type of scene dataset, e.g., Figure 3, we first choose

a well-designed indoor scene (Top-Left) and then change its
room size, the positions of windows/doors/artificial lights,
or the positions/directions of the object groups to generate
the other scene examples. This would lead to differentiated
examples with various room configurations and layout quality
differences. The room configuration variations ensure that
the constructed datasets can be used to assess more kinds
of indoor scenes, while the layout quality differences ensure
that meaningful assessment results can be obtained from
subjective comparisons. Note that we use the left-bottom
corner of the floor as the origin of its associated coordinate
system to encode the room size and the positions of windows,
doors, artificial lights, and object groups. The directions of
the object groups are limited to four directions (i.e., up, down,
left, and right). We also limit the range of room sizes to

Fig. 4 Top: the 2D plan of an empty room (Left) and the corre-
sponding 3D scene (Right). Bottom: room features and parameters
which are related to the human agent (representing object groups).

avoid too small or too large rooms in the datasets. In our
lightweight datasets, we totally have 48 scene examples in all
6 types with different layouts. On this basis, we also duplicate
the well-designed scene example two or three times in each
type, aiming at balancing the quantities between good- and
poor-quality scene examples. Since these datasets are small,
we can conduct subjective comparisons on them to label their
assessment scores. We generate a snapshot for each scene
example with the same view of the human agent in the scene
for comparison.
We define the room features that focus on the relations

between furniture layout and room components (i.e.,
wall/window/door), rather than only use the whole shape
of the room. Specifically, we consider four types of room
features to establish such relations. The features of windows
and doors are associatedwith the relative directions, especially
the angles between the direction of the object group and the
vector from the object group to the windows and doors. This is
mainly because such included angles generally determine the
front view of the agent on the object group, and thus impacting
the subjective perception of humans on the associated activity.
Considering the symmetry, we use the sine-squared functions
of the included angles as the features. The features of artificial
lights and walls are associated with their relative distances
to the object group. We directly use the Euclidean distance
to represent the features of artificial lights; while for walls,
we use the room size to normalize the distances between the
object group and walls.
As illustrated in Figure 4-(Bottom), we define the room

features based on the front direction and the position of an
object group (where we set the agent). Here we first focus
on the case of a room with a single window, a door, and a
light (Figure 4-(Top)), and will discuss general cases later.
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We assume that d denotes the front direction and (x, y)

denotes the position of the object group, respectively. Let dx
and dy be the distances from the object group to the front
and right-side walls; Lx and Ly are the corresponding side
lengths of a rectangular room (or the oriented bounding box
of a non-rectangular room); (xw, yw), (xd, yd), and (xa, ya)

denote the respective positions of the window, door, and
artificial light. To describe the relations between the object
group and room components including windows, doors,
walls, and lights, the room features consist of the angles
between the front direction of the object group and the
object-to-window/-door direction that measures the relations
to windows and doors, and the relative positions between
the object group and walls and lights. Specifically, the
sine-squared functions of the included angles (denoted as
Fw and Fd, respectively) between d and the directions from
(x, y) to (xw, yw) and from (x, y) to (xd, yd), the distance
Fa from (x, y) to (xa, ya), and the relative position Fl of the
object group in the room, are described as follows:

Fw(x, y,d) = 1− (
d · (x− xw, y − yw)

||d||2 · ||(x− xw, y − yw)||2
)2,

Fd(x, y,d) = 1− (
d · (x− xd, y − yd)

||d||2 · ||(x− xd, y − yd)||2
)2,

Fa(x, y) = ||(x− xa, y − ya)||2,

Fl(x, y,d) = (
dx
Lx

,
dy
Ly

).

(1)

Fuzzy-based Subjective Comparisons. Due to the lack
of quantitative metrics for layout quality evaluation, we aim
to leverage subjective evaluations to discriminate the indoor
scene examples in the datasets. Inspired by the fuzzy set
theory [13], especially the analytic hierarchy process [12], we
employ pairwise comparisons to label the assessment scores
of the differentiated indoor scene examples by calculating their
membership degrees. To reduce the impacts from individual
biases, we recruited 32 participants to compare the randomly
chosen scene pairs from our datasets. The participants were
informed of the related object group for each type of scene, and
asked to compare the snapshots of each scene pair by choosing
the one they preferred. We collect such intuitive but fuzzy
comparisons instead of accurate and professional evaluations
due to two reasons: 1) such comparisons do not require
professional interior designers thus making it easy to conduct;
2) the non-experienced users can still judge the quality of
the indoor scene based on their perspective, even they might
not know the hows and whys, that is mainly because the
high-quality scenes will always make people feel comfortable
in visual. In total, we collected 2,962 comparisons including
sitting and watching TV (496), lying and watching TV (713),

having dinners (372), working at home (544), conferencing
(310), and working in office (527).
Let S = {s1, s2, · · · sM} be a set of scenes with the same

type, we construct the pairwise comparison matrix G as
follows:

G =


p(s1|s1) p(s1|s2) · · · p(s1|sM )
p(s2|s1) p(s2|s2) · · · p(s2|sM )
p(s3|s1) p(s3|s2) · · · p(s3|sM )
...

...
...

...

 . (2)

Different from [12], which uses intensity of importance (from
1 to 9) to construct the pairwise compassion matrix, the
entries of the above matrix in our method are defined below:
each entry p(si|sj) represents the degree of preference of si
over sj . Since the comparison in our implementation is either-
or, we simply define the matrix entries using the following
equation:

p(si|sj) =
psj (si)

psi(sj) + psj (si)
,∀si, sj ∈ S, (3)

where psj (si) represents the count of the votes where the
participants felt the scene si is better than the scene sj . Since
each participant only compared a portion of the dataset scene
pairs to avoid fatigue, we use the weighted average of each row
of G as the membership degree function. The weight is the
squared root of the comparison frequency t(i, j) =

√
ni,j

N ,
whereN is the total number of the participants and ni,j is the
number of comparisons for the pair of the scenes si and sj .
Note t(i, j) = 0 if scene pair (i, j) has not been compared
(e.g., t(i, i) = 0). Mathematically, for each dataset scene
si, the membership degree function on the scene quality is
defined as:

MC(si) =
1

T

∑
j=1,··· ,M

G(i, j) · t(i, j), (4)

where T =
∑

j=1,··· ,M t(i, j). Based on this definition, we
can calculate all membership degreesMC(si) ∈ [0, 1] for all
dataset scenes. The better a scene, the larger its membership
degreeMC(si).

4 Indoor Scene Modeling
Given an empty room with specified activity labels that
indicate the user-expected object groups, our method first
assesses the given room by transferring the assessment scores
of the dataset scene examples, and then places the object
groups into the room guided by the assessment results to
synthesize an indoor scene.

Room Assessment. The continuous variations of the room
configurations form a space containing all possible scenes
for a certain group of objects, denoted as domain U , and
the differentiated scene examples in our datasets can be
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Fig. 5 Left: A room with the activity label of “sitting and watching TV”.Middle: The assessment results with respect to the up direction
of the associated object group about different room features (Equation (5)). Right: The compound assessment results with four different
directions (Equation (6)). Note we conjointly normalize the four maps to reveal that the proper direction (up or down in this case) has the
extremums of the probabilities.

considered as some sparsely sampled examples in U . The
mapping A(U) → V is to assess scenes in U and output
V ∈ [0, 1]. From the aforementioned user study result, we
obtain a sparse set of examples, where A(si) = MC(si)

based on the degree of membership functions for the scenes
in our datasets {si}. Hence we propose to use them as bases
to establish mapping A for all the scenes in U .
Since the scene examples in our datasets are characterized

through the room features, with respect to the position and
direction of the object group, we uniformly sample positions
in the given room with four directions to calculate a series
of room features. Then, we use the basis set {A(si)} of the
assigned activity to get the assessment energy for all sampled
positions of the given room to determine the placement
of the object group. For the four types of room features
{Fw, Fd, Fl, Fa} in Equation (1), let fn(x, y,d) be the value
of the n-th type of feature at the position (x, y) in the room
with the direction d of the object group, and f̃n(sk) be the
value of the same type of feature calculated from a scene in
our datasets sk. Note that the feature Fa only depends on the
positions. To reuse the assessment of our example scenes on
the given room, we define the assessment energy at position
(x, y) with the direction d as follows:

En(x, y,d) =

K∑
k=1

(1−A(sk)) ·
||fn(x, y,d)− f̃n(sk)||2

D(k,d)
,

D(k,d) =
∑
(x,y)

||fn(x, y,d)− f̃n(sk)||2,

(5)
where K is the number of the example scenes with respect
to the assigned activity, D(k,d) is the sum of the feature
distances for all possible positions in the room for the
normalization purpose. As a result of Equation 5, areas
in the given room with similar features to the example scenes
would have low energy due to the second term in En. If those
similar example scenes have higher assessment scores, the
areas will have even lower energies than others, due to the
first term in En. Note that such a calculation is conducted

on the 2D floor plan, which is equivalent to employ a greedy
strategy to traverse all sampled positions in the given room
for assessment.
Further, the given room might have multiple components

(i.e., windows/doors/artificial lights) that are more complex
than the scenes in our datasets. Imagine the scenario that
installing a new window to a room that already has one, the
newwindowmight have either no influence on a certain object
group if that’s too far away, or stacked influence cooperated
with the original window. In the latter case, the stacked
influence leads the probability of a certain position for object
placement to be a weighted sum of the assessments about the
two windows. Approximately, we use the mean assessment
score as the stacked result. In this manner, we have two
assumptions when using the above energy function: i) for
large-size rooms, the room components that are not close
to the object group will not impact the assessment; ii) the
influence of the nearby room components on the assessment
score is linear and stackable. Then, a compound assessment
can be performed by using the energies in Equation (5) to find
the proper position and direction for placing the object group
in a room. Since different room features might have different
effects on the assessment, weights are needed to balance the
scores, assuming the feature that is more correlated to its
assessment score would have a larger weight. For each pair
of the dataset scenes, si and sj , we calculate the correlation
coefficient between the feature difference ||f̃n(si)− f̃n(sj)||2
and the assessment difference ||A(si)−A(sj)||2, denoted as
Wn, and use its absolute value |Wn| to describe the effect of
the n-th type of room feature. Note that the weights can be
adjusted for achieving better effects in practice. To this end,
we obtain a compound assessment for the position (x, y) and
the direction d as follows:

arg min
x,y,d

∑
n

|Wn| · En(x, y,d),

Wn = corr(||fn(si)− fn(sj)||2, ||A(si)−A(sj)||2).
(6)

Since we have traversed all sampled positions in the given
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room to calculate the assessment energy, we can easily
obtain the minimum value of Equation 6 from these sampled
positions. As a result of the weightWn, the four kinds of room
features in Equation 3 have different impacts on different
activity-related object groups. In our implementation, we
observe that the weight of Fl (i.e., light-human distance)
is significantly larger than other features for activities of
“sitting and watching TV” and “lying and watching TV”,
while the weight ofFd (i.e., door-human angle) is significantly
smaller than other features for activities of “conferencing”
and “working in office”. For other activities, the differences
of room feature weights are not significant.
Based on our assumption that the influences of different

types of room components are linear and stackable, the
assessment for each type of feature can be done independently.
Figure 5-(middle) visualizes the assessment results of a room
based on the energies with the up direction of the object
group (represented by the agent): a higher probability area
(redder) that has lower energy is more likely to place the
objects. The assessment with different directions can also
ascertain the proper direction of the placed object group
(see Figure 5-(Right)). Besides, our method can be used for
rooms with partial features, e.g., a room without windows or
a room without artificial lights. Similarly, for a given room
with multiple windows/doors/artificial lights, we can first
decompose the given room into multiple single-component
rooms (i.e., with a single window, door, or artificial light),
and then combine the independent assessments of these
single-component rooms to obtain the compound assessment
of the given room. For example, in Figure 6, the room with
multiple windows in row (c) can be decomposed into two
rooms with a single window ((a) & (b)) for assessment.
Since the given room is decomposed into only two rooms,
assessment maps of the decomposed rooms are combinedwith
the same weight of 0.5 in terms of each direction, resulting in
the final assessment result in (c). Analogously, rooms with
multiple windows/doors can be assessed by our method.

Assessment-guided Synthesis.We have developed a user
interface that assists users to easily construct an empty
room, by specifying the size of the room, the positions of a
window, door, and/or artificial light (e.g., droplight), and then
assigning one or multiple activity labels to each room. Based
on the assessment of an input room, our system can find the
appropriate positions and directions of the object group, as
well as its member objects with proper areas from our object
database (collected from a well-known 3D Warehouse [32]).
Our system can then generate 2D floor plans by applying the
2D projections of these objects. We can easily transfer 2D

Fig. 6 Assessment results of activity “sitting and watching TV”
in terms of the four directions of three given rooms. The suggested
directions in three rows are marked with blue stars.

Fig. 7 Scene synthesis with multiple activity label inputs. After
the object group for the first activity label is placed in the room
(Top-right), the occupied area is then masked for the assessment
about the next activity label (Bottom-right).

plans to 3D scenes, benefited from the 3D information of the
objects in the database. For some furniture types like beds
and TV sets, we snap them to the wall near the suggested
position as the constraints to refine the layout.
An input room can have multiple activity labels for the

placement of more than one object group. As illustrated in
Figure 7, once an object group has been placed based on the
first assigned activity label, the areas that have been occupied
or too small to place any additional object are masked out.
Then, our system assesses the remaining space in the room
to place the next object group. Although so far our method
focuses on single room modeling, large indoor scenes with
multiple rooms can also be tackled by our method room by
room.Moreover, aiming at relieving the workload of manually
specifying activity labels, we can adopt a similar strategy for
adaptive indoor scene modeling as [8], in which the area ratio
between objects and room is used to measure whether more
objects could be allowed to place in a room. In this way, the
user can make a long list of activity labels, but how many
labels are available depends on the size of the given room.
Namely, a small room would only have few object groups in
the list while a large room would have more. We show some
application examples in Section 5.
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Fig. 8 Galleries of synthesized indoor scenes. In each case we show the input empty room with the assigned activity label(s), the assessment
results of the suggested directions in 2D projections, and the 3D scenes generated by our method.

5 Results and Discussion
In this section, we first show various indoor scene modeling
results by our approach, then evaluate our method through
an ablation experiment, a user study in real-world scenes,
and comparisons with an activity-centric method [8] and two
deep-learning-based indoor scene modeling methods [10, 14].

Modeling Results. In Figure 8, we show the synthesized
indoor scenes along with the assessment results of their
corresponding rooms computed by our method, with respect
to the user-specified activity labels. In case (a), we choose
the assessment results with four different directions to place
the same object group in a large room. We can see from the
energy map (middle) that the four directions have different
probability distributions and suggested positions. Note that we
intend to show the relations between the suggested positions
of objects and the four directions we focused on in this case.
For the synthesis of large rooms with multiple objects of the
same kind, symmetry should be considered, e.g., flip half or
quarter of the designed scene to obtain symmetrical layouts.
The other four cases showmore complex scenes with multiple
object groups, given different activity labels. In the last two
cases ((d) & (e)), we test our method on non-rectangular
rooms. Each non-rectangular room is tackled as a whole, with

the areas outside the room masked out. It can be seen that,
thanks to the defined room features, even though we do not
have any non-rectangular scenes in our datasets, our method
can still be used for the synthesis of plausible non-rectangular
scenes.
In Figure 9-Top, using three cases we show how to

combine multiple rooms into larger indoor scenes. For each
case, the indoor scene modeling is conducted per room.
Figure 9-Bottom shows three cases of adaptive indoor scene
modeling. For each row, the sizes of the input rooms determine
how many activity labels from the user-specified list (Left)
can be adopted for indoor scene modeling. Note that the TV
set is manually removed in the large room of the middle
case for a better passageway. In this manner, our method
can be used for both interactive and automated indoor scene
modeling. In addition, our metrics for the room assessment
with respect to certain object groups can also be used to
evaluate indoor scenes. For example, in Figure 10, we
normalize the compound assessment result of the object
group in each scene in the range of 0 and 1. The scenes
in the left column have better paths according to the door
positions (e.g., the first and third cases), do not block the
windows (e.g., the first and second cases), and better sense
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Fig. 9 Top: Large indoor scenes that are combined by the per-room modeling results. Bottom: Indoor scene modeling with adaptive
groups of objects. In each row, we show the candidate activity labels and the synthesized scenes with small and large room inputs.

of privacy (e.g., the last office). We can see that scenes with
good layouts would have high scores. This demonstrates that
our method can refine large-scale indoor scene datasets via
filtering out the examples with low assessment scores. On
average, the generation of one indoor scene took less than 5
seconds per activity label for assessment and 10 seconds for
object placement and system I/O, on an off-the-shelf computer
with Intel Core i7-8550U 1.80GHz CPU and 8GB RAM.

Evaluations. In Equation 5, we set A(si) = MC(si) to
encourage the high-quality indoor scene examples to play
more important roles than the low-quality ones in indoor
scene synthesis. We conducted an ablation experiment to
evaluate the usability of the weighted indoor scene examples
in our datasets. In Figure 11, the first row of energy maps are
directly calculated by Equation 5, while the energymaps in the
second row are calculated by setting A(si) = 0 in Equation
5. Four energy maps in each row are corresponding to the up,
down, left, and right directions for placing the object groups,

respectively. At the bottom of Figure 11, we show two 3D
scenes corresponding to energy maps (a) and (b). Since the
position of the window might lead backlight problem to scene
(b) for watching TV, scene (a) has a relatively better layout
than scene (b). If we do not weight the dataset indoor scenes
(i.e., set A(si) = 0), Equation 5 can hardly generate scenes
like (a) when the quantity of the scene examples similar to
(a) is smaller than the examples similar to (b). Therefore,
our method that weights the dataset is effective for the small
dataset with differentiated examples.
On the other hand, we conducted a user study to demonstrate

that the dataset weights (i.e., the fuzzy measurementMC(si)

in 1) are consistent with the subjective perceptions. Since
our method can provide common-seen layouts in the real
world for most residential scenes, we only conducted the user
study on office scenes that always have various layouts. We
recruited 10 volunteers (postgraduate students) as two groups
(5 participants in each group) to evaluate two office scenes
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Fig. 10 Indoor scenes evaluated by our metrics and the assessment
scores, with respect to the layouts of the groups of objects.

(Figure 12-Left) in terms of six different positions for the
activity label “working in office”, by giving scores from 0
(worst) to 1 (best). We also used our method to assess the
same two scenes, based on the participants’ positions and
directions. To normalize the assessment results of our method
and make them comparable with the participants’ scores.
We proportionally mapped our results to the range between
the maximum and minimum participants’ scores. We post
the assessment results of ours and participants’ in Figure
12-Right. Even though the perceptions are too subjective to
be precisely measured, the comparison results still show that
the priors extracted from our dataset are similar to what we
can obtain from real-world experience.
Moreover, we compared our modeling results with the

state-of-the-art indoor scene modeling methods [8, 10,
14] to demonstrate the effectiveness of our method. In
Figure 13-Left-Top, we compare our method with an
activity-centric method [8]. For two given rooms (a small
one and a large one), we use "lying and watching TV" +
"working at home" and "bed" + "bookshelf" as the input
labels of our method and the method of [8], respectively.
The indoor scene synthesis results show that even employing
different strategies of object exploration, both methods can
explore proper activity-related indoor objects that suit the
size of the input room. More specifically, the method of [8]
leverages the activity-associated object relation graphs to
determine the proper object categories in the room, while our

Fig. 11 Top: Two rows of the calculated energy maps in terms
of four directions, given the same room in an ablation experiment.
Bottom: 3D scenes corresponding to energy maps (a) and (b).

Fig. 12 Comparison of the subjective assessments of humans on
two offices with six desks in the real-world and the corresponding
assessment results of our method.

method simply uses the order of the specified activity labels
as their priorities for choosing the associated pre-defined
object groups. Limited by the pre-defined object groups,
some indirect interactive objects (e.g., bookshelf) are not in
any object groups considered by our method, so the explored
objects in our results are fewer than [8]. However, the method
of [8] only has a single synthesized layout for the suggested
objects, while our method can make more variations on the
indoor layout, just by changing the order of the input activity
labels or using the sub-optimal energy maps.
In Figure 13-Right, we show the comparison between our

results and results of [10]. The model of [10] is based on
a convolutional neural network and trained by a large-scale
indoor scene database [33]. The comparison results show
that both of the methods can generate plausible indoor
layouts for the given room. Note the given room may not
be similar to any scene examples in the datasets used in
the two methods. In Figure 13-Left-Bottom, we compare
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Fig. 13 Comparisons of our results with the synthesized indoor scenes of Fu et al. 2017 [8] (Left-Top), Wang et al. 2018 [10] (Right), and
Li et al. 2019 [14] (Left-Bottom)

.

Fig. 14 Top: An example that adds a bookshelf into the "working
at home" group with four pre-set relations (Left). Users can select
one of them (e.g., in the red box) to synthesize the indoor scene
(Right). Bottom: Our result and the professional design for a room
with a cambered edge.

the synthesized indoor scenes given rectangular rooms by
our method and by the method in [14]. Since the method
in [14] does not consider the impact of windows or doors,
even though their generated scenes could have richer content,
our results look more appropriate for the environment of
the given room. Comparing the layouts between ours and
methods [10, 14] in terms of the given environment, furniture
in their methods might block the window while ours do

not, e.g., the second row in Figure 13-Right and the first
column in Figure 13-Left-Bottom. Our results can have
better door paths that would not impact the activity of the
object groups, e.g., the third row in Figure 13-Right and the
second column in Figure 13-Left-Bottom. Note that since
the influences of the environmental factors and their mixed
effects on the quality of the synthesized scenes are subjective,
using fuzzy measurement to collect such priors could be more
flexible than directly using hard constraints such as setting
the relevant positions/directions between object groups and
windows/doors. However, methods of [10, 14] can make more
layout variations in their synthesized indoor scenes, benefiting
from the large-scale training datasets.
We also conducted a user study to compare the quality of

the generated layouts between our method and the above two
methods [10, 14]. 17 participants (undergraduate students
majored in digital media technology) were recruited to
compare 16 pairs of scenes (8 pairs for our method and
[10], and 8 for our method and [14]), and choose the better
layout from each pair (the order of the two scenes in each
pair was randomized). Note such two comparisons were
separately conducted. The result of the first one shows that, in
136 comparisons (17×8) our results won 67 times (49.3%),
while [10] won 69. The result of the second one shows that
our results won 70 times (51.5%) in 136 comparisons, while
[14] won 66. These results demonstrate that our method can
generate indoor layouts with comparable quality to the two
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indoor scene synthesis methods [10, 14]. It is noteworthy
that, taking a sharp turn from the state-of-the-art methods that
generally train deep-learning-based models with large-scale
indoor scene datasets, our method only utilizes much smaller
datasets of differentiated examples for indoor scene synthesis
and can produce comparable results.

Limitations. Our current approach has several limitations.
First, our method is based on several simplified assumptions:
utilizing doors and windows as spots in the room features;
ignoring the cross effects between object groups when
collecting the indoor scene datasets; and assuming the impacts
of windows/doors/artificial lights on room assessment are
linear and stackable. Second, new subjective comparisons
need to be conducted if we add new data, especially with
respect to new object groups, to the datasets. This might
somewhat limit the scalability of our currentmethod. As future
work, we plan to study the transferability of the subjective
evaluations between different object groups. Besides, our
method needs pre-defined relationships within an object
group. For some decorations like potting and mural, it still
demands user assistance for the manual placement of objects
into a scene. Some indirect interactive objects are also not
considered in the currently pre-defined object groups, since
we cannot always use a fixed arrangement (i.e., relative
positions/directions) for these objects in a group. Aiming at
addressing the placement of such objects and making more
variations of the in-group object arrangement, we can use
flexible object relations that contain multiple examples of
in-group object arrangement in the further. For example, in
Figure 14-Top, we pre-set four object relations for adding
the bookshelf into the object group associated with "working
at home", while the user decides which one is better for the
synthesized indoor scene. Third, since the activity labels
are assigned by users, improper user-specified object groups
might lead to unnatural results (e.g., dining room with a bed).
This can be relieved by employing priors such as relation
graphs which indicate the co-existing possibility between
different object groups. Lastly, since we only consider four
different directions, our current implementation can only
generate axis-aligned layouts even given non-rectangular
rooms (e.g., Figure 8(d & e)). However, for non-axis-aligned
rooms or rooms with cambered edges, there may always exist
better object arrangement solutions rather than axis-aligned
layouts. For example, in Figure 14-Bottom, given a room
with a cambered bay window and the assigned activity of
conferencing, we show a scene synthesized by our method
(Left) and one by an interior designer (Right). Our method
suggests a small conference table and places it to cover a

small part of the room, while the interior designer chooses
a larger table with an oblique direction, making better use
of both the space and light. To alleviate this problem, our
approach assists the user to slightly adjust the position and
direction of the objects to refine the indoor layout.

6 Conclusion
In this paper, we present a new approach to using datasets of
differentiated examples to support indoor scene modeling. To
construct such datasets, we conduct subjective comparisons on
special-designed indoor scenes with different room features
in terms of certain object groups, and then compute the
membership degrees of scene quality for the example scenes
in our datasets as their assessment scores. Given a new room
and user-specified activity label(s), our approach uses the
labeled dataset scenes as priors to assess the given room,
and suggests the appropriate positions and directions for
the placement of the object groups that are pre-associated
with the activity labels. In this way, our approach is able to
differentiate the qualities of the indoor scene examples when
using them to guide scene modeling. It can open up new
research opportunities towards example-driven indoor scene
modeling.
In the future we plan to further extend our room features to

tackle more types of factors including colors, decorations, and
furniture styles, to handle rooms with more complex shapes
(e.g., with cambered edges), and to enable the automation
of designing more comfortable indoor scenes for target
activities.We are also interested in exploring the cross-activity
influences on indoor layouts to increase the practicality of
our method, especially the scenarios that an object group is
associated with multiple activities. This involves the priorities
of different activities, which could also be collected from the
subjective comparison experiments. Such priorities would
enable the weighted superposition of the energy maps for
all specified activities on a single object group, thus jointly
impacting the output layout. To improve the scalability of our
approach, we also plan to study the similarities of different
kinds of object groups, to extend a limited number of labeled
data for more types of indoor scenes in the future.
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