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Abstract— Augmenting the motion of virtual surgical instru-
ments onto a minimally invasive surgical field acts as a visual
cue for the operating surgeon. In this work we propose an
interfacing mechanism to provide input for maneuvering such
virtual surgical instruments. Specifically, an interface in the
form of a 3D-printed dodecahedron pen with attached binary
squared planar markers is employed. The proposed tracking
mechanism computes the pose of the interface from a real-
time video feed acquired from a camera. The system provides
accurate pose estimation with mean errors of 0.27 ± 0.06
mm in translation and 0.37 ± 0.04 degrees in rotation. The
object pose estimation takes ∼6 ms. Utilized Azure Kinect
camera with frame rate of 30 FPS and 1280 x 720 image
resolution video, the tracking speed of the proposed system is
∼25 FPS . The easy to integrate, cost effective setup makes the
interfacing mechanism particularly suitable for remote surgical
tele-mentoring applications.

I. INTRODUCTION

Minimally Invasive Surgery (MIS) has emerged as a more
patient-friendly and practice-enhancing alternative to tradi-
tional open surgeries with long-term cost-effectiveness. It
entails the use of elongated surgical instruments and a scope
inserted through small incisions. The interaction between the
surgical instrument’s tooltips and the tissue to be operated
is visualized using the scope and is rendered on a screen.
Recent studies has demonstrated that augmenting the view
of the rendered surgical field with motion of virtual surgical
instruments (as shown in Fig. 1) acts as realistic visual cues
and facilitates intra-operative surgical mentoring [1], [2],
[3], [4]. In such scenarios, a low-cost, reproducible, easy
to integrate, interfacing mechanism for maneuvering virtual
minimally invasive surgical instruments would be beneficial.

In this work, we present a preliminary design of an
interfacing mechanism that requires minimum configurations
to be integrated with surgical setup in the operating room. It
uses a single camera connected to a workstation for tracking
an interface held by the operator. As the operator moves
the interface (in form of a 3D Printed Dodeca Pen), the
system efficiently processes each frame of the video feed
from the camera, computes the pose of the interface (position
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Fig. 1. A virtual minimally invasive surgical instrument overlaid onto a
surgical field. The virtual surgical instrument acts as a visual cue for the
operating surgeon. View of the augmented surgical field in (a) Laparoscopic
(manual) surgical setup (b) Robotic surgical setup.

and orientation), and converts it to a coordinate frame in
virtual space (represented by XYZ translations and three
rotational angles: roll, yaw, and pitch). Virtual tooltips of
the surgical instrument mesh models are mapped to the
frame. As the frame moves, the virtual surgical instrument
follows the motion under the constraints defined by incision
point and instrument’s degrees-of-freedom. The video stream
(displaying the surgical field) from the scope system is
bifurcated and passed to the workstation, the motion of the
surgical instruments is overlaid onto the video stream, and
the video stream is rendered back onto the visualization
screen in the operating room. The motion of the virtual
surgical instruments rendered onto the surgical field acts as
visual cues for the operating surgeon.

This work applies a binary squared planar marker tracking
method for real-time surgical instrument tracking. To track
an interface and limit occlusion issues, a 3D-printed dodec-
ahedron with attached squared planar markers is employed
to ensure a good visibility (i.e. one detectable marker at all
time) using only one camera. The major contributions of this
work are summarized as follows:
• Real-time tracking of an interface comprising of 3D-

printed dodecahedron with attached squared planar
markers; and

• apply the estimation of 3D configuration algorithms to
determine the pose of the tracked object using a single
camera.

II. RELATED WORK

A few surgical instrument tracking approaches using
camera images have been proposed, including point cloud
based tracking [5], [6], optical tracking [7], vision-based and
markerless tracking [8], [9], and 2D marker based tracking
[10], [11], [12]. Squared planar markers have been employed



in many of the above methods. Also, tracking using one
marker has a limited range of motion and a narrow working
area. Moreover, since 2D or planar markers are commonly
attached onto flat surfaces, the issue of occlusions becomes
a serious problem when tracking 2D markers attached to a
cylindrical object. The proposed tracking interface approach
in this work aims to overcome these limitations.

Binary squared fiducial marker based methods use an
external wide black border and an internal binary matrix
that identifies each marker. The pose of a square marker
can be easily detected based on its four corners. Square
fiduciual markers are mainly used for camera pose estimation
and camera calibration [13], [14], [15]. Additionally, object
tracking using square fiducial markers have become popular
solutions in many applications [16], [17], [18], including
autonomous robots, autonomous vehicle, and augmented
reality. Its popularity comes from its ability for robustness,
precision, and speed [19], [20].

Wu et al. [21] proposed a system for 6 DOFs tracking
of a passive stylus composed of a 3D printed dodecahedron
with attached binary square fiducial markers and a pen. Their
system takes input images from a single monocular camera
and generates a digital 2D drawing from the tracked stylus
pen. This is a cost-effective method using a simple stylus;
however, it is too slow for real-time applications which
require a high throughput.

To tackle the relative poses between planar markers, Sar-
madi et al. [22] proposed a novel method for object tracking
using multiple cameras and multiple squared planar markers.
Their method automatically estimates the 3D configuration
of the markers, the camera extrinsic parameters, and the
relative pose between the markers and the camera. However,
it was only tested in experimental scenarios with at least
three cameras.

Zhang et al. [10] proposed a new hybrid marker design
that combines circular dots and chessboard vertices to track
surgical tools to facilitate intra-operative guidance in MIS.
There is a limitation in term of the work space such that
the distance from the markers to the camera is in the range
from 50 to 200mm. As such, their method limits the range of
rotational and translational motion in practical applications.

In our approach, we utilize the DodecaPen design in [21]
as our object simulator and extend the object configuration
algorithm in [22] to estimate the pose of the object based
on a single camera, instead of multiple cameras. Once the 6
DoFs pose of the object is obtained, a Kalman filter [23] is
utilized to smooth the tracking results by filtering out noise
and biased data.

III. OUR METHOD

The overview of our proposed system is illustrated in
Fig. 2. The proposed system consists of two phases: initial
calibration and object tracking. At the initial calibration step,
both an Azure Kinect camera and the interfacing object
are calibrated beforehand using vision-based methods. At
the runtime object tracking step, our system can real-time
process each frame of the video feed from the Azure Kinect

camera and estimate the position and orientation of the
tracked interface object based on the square binary markers
attached to it. Once the pose of the interface object is
determined, our system updates the pose of the surgical tool
and the tooltip axes and provides an input stream to a VTK
+ QT system, which renders the virtual surgical tool and
update its motion accordingly.
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Fig. 2. Overview of the proposed system

A. Object Design

Since binary square fiducial markers are commonly at-
tached to flat surfaces, the issue of occlusions is aggravated
when tracking planar markers on a cylindrical object. To
address this issue, we employ the 3D-printed dodecahederon
design [21] and hand-glued the square binary markers to
each of the surfaces of the dodecahedron. Each edge of the
resulting dodecahedron is 22 mm in length, and each edge
of the marker is 20 mm in length. The ArUco library [19] is
employed to generate and detect the square binary markers. A
pen or any cylindrical object with roughly 6 mm in diameter
can be attached to the dodecahedron (see Fig. 4).

B. Initial Calibration

Before tracking begins, our system needs to perform a
one-time initial calibration to determine the camera intrinsic
parameters and the relative pose between the markers. To
complete the calibration process, the users are required to
capture multiple images and provides fixed parameters. By
performing the calibration procedure in the beginning, object
tracking can be done efficiently.

1) Camera Calibration: To perform camera calibration,
we take several images of the printed ChArUco board from
multiple angles without moving the camera. A ChArUco



board is a combination of chessboard and ArUco markers
to allow partial occlusion and achieve a high accuracy [24].
Given an input image, it detects and estimates the pose of
the ArUco markers; then four corners of the ChArUco board
are interpolated from these markers. The camera calibration
function will return the camera intrinsic parameters and
the reprojection error obtained from the calibration. The
reprojection error should be close to 0 to ensure that the
calibration is performed correctly with a high accuracy. Each
time the camera is moved, the camera needs to be re-
calibrated.

2) Object Calibration: Object calibration is used to de-
termine the relative pose of each marker with respect to the
reference marker. Assuming that all the markers remain fixed
during the experiment, we first capture multiple images of the
tracked object from different view points without moving the
camera. Then we apply the algorithm proposed by Sarmadi
et al. [22] to find the best transformation from each marker to
the reference marker as shown in Fig. 3. Given two different
markers i and j, and their transformations to the camera,
denoted as T t

i and T t
j respectively, we can determine the

pair-wise transformation from marker i to marker j at time
t as follows:

Mt
i, j =

(
T t

j
)−1 T t

i . (1)

As stated in the work of [22], due to noise and the
ambiguity problem, more than one transformation per marker
in an image is possible. To find the optimal transformation
from marker i to marker j, Sarmadi’s algorithm considers
the transform that minimizes the sum of the distances of one
transform to all transforms. Lastly, the algorithm uses graph
analysis and constructs a minimum spanning tree of pair-wise
transformation to find the optimal relative transformation
from each marker to the reference marker from several
observations. More detailed description of the algorithm can
be found in [22].

Fig. 3. Overview of Sarmadi’s object calibration algorithm used in our
proposed system.

C. Object Tracking
The second phase of our proposed system is the object

tracking. From each frame of real-time video feed captured
from the camera, our system determines the position and
orientation of the object. Utilizing the ArUco library [19],
our system can detect the square binary markers attached to
the object, and get the pose of each marker. This is done by
first detecting the four corners of the marker and applying the
standard Perspective-n-Point (PnP) algorithm for estimating
the marker pose [25]. Using the parameters obtained from
camera calibration and the relative transformation from the
reference marker, we can determine the relative transfor-
mation of the reference marker with respect to the camera
as long as at least one marker is detected. The estimated
pose of the object is represented as a transformation matrix
consisting of R, a 3x3 rotation matrix, and t, a 3x1 translation
vector, as follows:

[
R t
0 1

]
=


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 . (2)

The Levenberg-Marquardt optimization algorithm [26] is
used to minimize the reprojection error, i.e., the total sum
of squared distances between the observed points and the
projected points.

The final step of object tracking is to apply a Kalman
Filter to the estimated result. A Kalman Filter method is
used to estimate the state of a linear system where the state
is assumed to be distributed by a Gaussian [23]. The Kalman
filter is a recursive estimator which uses the estimated state
from the previous time step and the measurement of the
current time step to estimate the state for the current time
step. In our implementation of the Kalman Filter, the system
state is stored as a vector composed of the translation vector,
t, and rotation vector, r of the object. The state vector is given
by:

X =
[
tx ty tz rx ry rz

]T (3)

Our algorithm follows the standard Kalman Filter method
which consists of two steps, prediction and correction [27].
Our algorithm first predicts the 3D object pose at each frame,
and then refines the prediction every time a new measurement
of the object is available. The general time update equations
for state prediction are as follows:

X̄k = A∗Xk−1 +wk−1, (4)

P̄k = A∗Pk−1 ∗AT +Qk−1. (5)

where X̄k is the predicted state at time k, Xk−1 is the vector
representing the state at time k−1, A is a transition matrix
from the state at the previous time step k−1 to the state at the
current time step k, and w is a random variable representing
the noise in the process. ¯Pk−1 is a matrix representing the
prediction error covariance at time k−1, and Q is the noise.

After predicting the state Xk and its error covariance, the
Kalman Filter uses the measurement to correct the prediction.

Kk = Pk ∗HT (H ∗Pk ∗HT +R)−1, (6)



Xk = X̄k +Kk ∗ (Zk−H ∗ X̄k), (7)

Pk = (I−Kk ∗H)∗ P̄k. (8)

In Eq. (6), Kk is the Kalman gain, H is a matrix that
transforms the state space into the measurement space, R
is the measurement noise. The actual state Xk is updated
using the predicted state X̄k, the Kalman gain Kk, and a
measurement Zk of the state in Eq. (7). Zk is the translation
vector and rotation vector of the object in the frame. The
process is repeated to predict the object state for the next
time step. The Kalman Filter is used for smoothing out
the motion by avoiding/filtering cluttering noise. In the case
of no detection, the Kalman Filter can predict the marker
position and orientation for a short interval based on the
previous captured data.

IV. RESULTS AND EVALUATIONS

In this section, we describe the results of our experiments
conducted to evaluate the proposed method. We evaluate
the accuracy of our object tracking method by directly
comparing it with both ground-truth data obtained from
the OptiTrack motion capture system [28] and the existing
surgical instrument tracking method by Zhang et al. [10].

OptiTrack 
V120:Trio

Azure Kinect 
Camera

Reflective 
Markers

Squared Binary 
Markers

Tracked
Object

Fig. 4. The experimental setup consists of an OptiTrack V120:Trio system
to track reflective markers and an Azure Kinect camera to track the square
binary markers attached to the tracked object (i.e., 3D-printed Dodecahedron
Pen).

A. Experiment Design

Our system ran on a desktop computer with 2.5 GHz
CPU and 32 GB RAM. We use an Azure Kinect Sensor
with a color camera resolution of 1280 x 720 and a frame
rate of 30 FPS. In addition, an OptiTrack V120:Trio motion
capture system with three cameras is used to acquire the
ground truth motion of the object (The experimental setup is
illustrated in Fig. 4). The motion capture system can track
the positions of an object by capturing the pose of reflective
markers attached to the object. Five reflective markers are
attached to the object using a plastic rigid body attachment
as shown in Fig. 5.

The OptiTrack bar and the Azure Kinect camera are
positioned in parallel with one another and with the capture
volume. Since the distance from the camera to the object can
affect the accuracy of the tracking results, we set the volume
of the tracking area to be within 0.5 meter from the camera.

Fig. 5. Tracked object with attached reflective markers and square binary
markers

While doing experiments, the object is moved freely within
the volume.

B. Experimental Results

To evaluate the proposed approach, we measured the
accuracy of the pose estimation of the object. In order to
quantitatively validate the pose estimation error, we used the
OptiTrack system as shown in Fig. 4 to obtain the ground
truth. For experimental validation, we ran eight trials at
different distances from the camera to the object: 0.15, 0.2,
0.25, 0.3, 0.35, 0.4, 0.45, and 0.5 meters. For each trial, a
total of 5 captures were made to obtain the ground truths
and the estimated results by our approach. The translation
error, rotation error, and computational time were computed
for each capture. To compute these errors, we first aligned
the trajectories obtained from our approach and the ground
truth using the Umeyama alignment method [29]. Then the
translation error of the estimated pose is computed using the
Euclidean distance of 3D measurements given by:

ERRT = ‖t̄− t‖ , (9)

where t̄ is the ground truth translation vector, and t is the
estimated translation vector.

The rotational error of the estimated pose is computed by:

ERRR = arccos
(

Tr(RT · R̄)−1
2

)
, (10)

where R is the estimated rotation matrix, R̄ is the ground truth
rotation matrix, arccos is the arccosine function in degrees,
and Tr represents the trace of the rotation matrix, i.e. the
sum of the diagonal elements of the rotation matrix.

The obtained results are shown in Fig. 6. The top graph
shows the mean translation errors (in millimeters) of our
proposed approach at eight different camera distances. The
middle graph shows the average rotation errors (in degrees).
In general, our approach can achieve a good estimation
within the distance of 0.5m from the camera. The mean errors
at the distance ranging from 0.2m to 0.4m are consistently
low. The mean errors increase towards the two ends of the
graph, with the highest errors at 0.15m and 0.5m from the
camera. Our experiment results indicate that the distance
between the object and the camera plays a role in the
accuracy of the tracking task. That is, if the object is too



Fig. 6. The mean pose estimation errors and the average runtime of the
proposed method with different distances from the camera

close to the camera or too far away from the camera, our
approach may not be able to achieve the optimal solution.

The bottom graph in Fig. 6 shows the average detection
time (in milliseconds per frame) of our approach. Since the
initial calibration is performed offline once, we only concern
about the execution time during continuous tracking. In this
context, tracking task consists of detecting markers in the
frame and estimating the object pose. On average, the object
pose estimation takes approximately 6 ms per frame.

In Fig. 7, we show the tracking results of our proposed
approach in one of the capture sessions in comparison with
the corresponding ground truth data. The ground truth tra-
jectories of the object are depicted in orange color, while the
estimated trajectories are depicted in blue color. As shown
in Fig. 7, we can observe that overall the tracked results are
reasonably close to the ground truth; but at some parts, there
are visible differences between the estimated results and the
ground truth due to occlusions and motion blur. For instance,
in the Z-axis of the rotation graph, ground-truth trajectory
drops from 200◦ to −200◦ at frame 42, which is the result
of a fast object motion. OptiTrack system running at 120
FPS was able to capture such rapid motion, however, our
system, capturing frames at 30 FPS, was unable to response
quick enough to the sudden changes. Our system estimates
the motion trajectory of the object based on the previous
data, thus we see gradual changes rather than a slope.

In MIS, the surgical instruments’ motions are restricted
due to kinematic constraints at incision points. Thus, we im-
plemented these motions such that the incision point is fixed
and unchanged for the entire duration of the experiment.
The tracked object controls the pose of the tooltips. For our
experiment, we focused on the laparoscopic tooltip which
involved 3 degree-of-freedom for translation and 1 degree-

Fig. 7. Comparison between the tracked results and the ground-truth data

of-freedom for rotation. Fig. 8 shows the integrated motion of
the proposed interfacing object to control the virtual surgical
instrument. For example, when the user moves the tracked
object along the x-axis (left/right), the virtual surgical tooltip
moves from the left side to the right side of the screen
accordingly following the object motion. Similarly, motion
control along the Y axis or Z axis is also illustrated in the
figure. When the user rotates the interfacing object along the
Y axis, the virtual surgical tool rotates along its y-axis on
the screen.

C. Comparison with Existing Methods

We also evaluated our approach by directly comparing
it with a recent, most related, surgical instrument tracking
methods proposed by Zhang et al. [10]. Their method uses
a hybrid marker design that combines circular dots and
chessboard vertices to track cylindrical surgical tools. It is
noteworthy that, while the purposes of both our approach
and their approach are the same (that is, to improve the
visualization of surgical tool tracking in minimally invasive
surgery), their specific tasks and environments have some
differences. Our method is designed for a tele-surgery men-
toring framework that requires little setup by the expert



(a) Translation along z-axis. Left/Right motion control of object.

(b) Translation along y-axis. Up/Down motion control of object.

(c) Translation along z-axis. Forward/Backward motion control of object.

(d) Rotate motion control of object.

Fig. 8. Motion of the proposed interfacing object and the controlled motion
of the virtual surgical instrument

surgeon in the remote location (i.e. no surgical setup or
surgical instruments is required). Whereas, their method [10]
is primarily designed for use in a surgical environment with
a monocular laparoscope and various types of surgical tools
such as needle driver, and cautery. Thus, this comparison may
not be perfectly fair, but their method is the most related,
recent work for comparison with our method, to the best of
our knowledge.

Specifically, we modified the work space to fit our com-
parison experiment. The cylindrical object used for tracking
was a pen with the diameter of 6 mm. We used the same
calibrated camera parameters from the above experiments for
both methods to ensure a consistent analysis. Our comparison
experiment adhered to the work space of Zhang et al.’s
method [10], that is, the distance from the interfacing object
to the camera must be within the range from 30 to 125 mm.
Moreover, the method of [10] limits the rotational motion
of the markers. The rotation around the roll, pitch, and yaw
axes is up to ±68◦, ±56◦, and ±81◦, respectively. The results
of the comparison experiment are reported in Table I. Our
approach can outperform [10] in term of accuracy. More
importantly, as shown in this table, our method is an order
of magnitude faster than [10] in term of tracking speed.
Lastly but not least, our method does not limit the range
of rotational and translation motion, thus providing a larger
work space than [10].

D. Limitations

Despite the validated accuracy and efficiency, our current
method has the following limitations. First, the tracking

TABLE I
POSE ESTIMATION ERROR USING DIFFERENT METHODS

Our approach Zhang et al.
Translation error (mm) 0.374 0.376
Rotational error (degrees) 0.58 0.603
Detection time (ms per frame) 4.75 94.53

accuracy of our current approach is susceptible to occlusions
and motion blur which occurs when the object is moved too
fast. Tracking failure could happen if markers failed to be
detected due to varied lighting conditions. Also, the distance
between the object and the camera has a significant effect on
the accuracy of pose estimation. The movement of the object
is confined in a volume within 0.5 meter from the camera
to obtain the best accuracy. If the object is too close to the
camera or too far from the camera, the accuracy of pose
estimation tasks degrades. This problem can be mitigated by
the use of additional cameras as reported in [22]. Second, the
initial calibration step is done offline and needs to be per-
formed again if the camera position/orientation is changed. A
potential improvement of our current approach is to include
simultaneous camera calibration as the markers are tracked.
Also, tracking of the surgical tooltip controller is unavailable
in our current approach. As the future work, we plan to
add this feature to enhance the applicability of our approach
in clinical use. Third, the experiment performed mainly to
evaluate the technical performance of our method in term of
accuracy and efficiency. Additional user study are required
to evaluate the method in term of usability and ergonomics
requirements of the surgeon. The end-user studies will assess
the clinical usage of the software [30], [31]. Finally, while
our initial implementation assigns a fixed incision point and
the scope camera pose to render the motion of the virtual
surgical instrument, these values would need to be real-time
tracked intra-operatively by using an external tracking system
[32]. The angulation and articulation of the scope would also
need to be incorporated [33], [34] .

V. CONCLUSION

In this paper, we present a tracking interface for control-
ling motion of virtual minimally invasive surgical instru-
ments. The proposed method starts with an offline initial
calibration of the camera and the interfacing object. Then,
at runtime it can real-time track and estimate the poses of
the interfacing object based on the video feed from a single
camera. Several experiments have been conducted to evaluate
the accuracy and efficiency of our method. Our experimental
results show that our method can achieve sub-millimeter
translation accuracy and sub-degree rotation accuracy in
object pose estimation when comparing it with the ground
truth obtained from a motion capture system. One of the
potential application for the proposed interfacing mechanism
is surgical tele-mentoring [4]. As a part of future work,
we plan use the interfaces with mixed reality devices to
overlay and control virtual surgical tools in open surgeries
and image-guided interventions [35], [36].
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