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Figure 1: Two frames generated by our approach, given speech input and speaker marking (the purple colored regions in (a)).
Our method first generates conversational gesture kinematics (colored with red, green and yellow respectively in (b)), and the
gesture motion can be further transferred to photo-realistic virtual human models (c).

ABSTRACT
In this paper we propose a novel conditional generative adversarial
network (cGAN) architecture, called S2M-Net, to holistically syn-
thesize realistic three-party conversational animations based on
acoustic speech input together with speaker marking (i.e., the speak-
ing time of each interlocutor). Specifically, based on a pre-collected
three-party conversational motion dataset, we design and train the
S2M-Net for three-party conversational animation synthesis. In
the architecture, a generator contains a LSTM encoder to encode
a sequence of acoustic speech features to a latent vector that is
further fed into a transform unit to transform the latent vector into
a gesture kinematics space. Then, the output of this transform unit
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is fed into a LSTM decoder to generate corresponding three-party
conversational gesture kinematics. Meanwhile, a discriminator is
implemented to check whether an input sequence of three-party
conversational gesture kinematics is real or fake. To evaluate our
method, besides quantitative and qualitative evaluations, we also
conducted paired comparison user studies to compare it with the
state of the art.
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1 INTRODUCTION
Multiparty conversation is one of most common human-human
communication forms in our society. Due to its obvious importance
and prevalence, researchers have attempted various efforts to un-
derstand the behaviors of multiparty conversations [Watzlawick
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et al. 2011], in particular, the analysis of multi-party conversational
gesture [de Coninck et al. 2019; Ding et al. 2017; Foster et al. 2012;
Gu and Badler 2006; Johansson et al. 2013; Kondo et al. 2013; Mat-
suyama et al. 2010; Mutlu et al. 2009; Otsuka et al. 2005; Vertegaal
et al. 2000]. Meanwhile, synthesis of multiparty conversational
motion can find its potential use in various applications [Jin et al.
2022], including automated virtual conversations in entertainment,
virtual crowds, human interaction with a group of robots, and tele-
conferencing.

Previously, researchers proposed a number of approaches to
generate conversational animations, such as hand gesture, gaze
animation, and other gesture modalities, using either rule-based
algorithms [Cassell et al. 1994, 2001; Marsella et al. 2013] or data-
driven algorithms [Alexanderson et al. 2020; Ferstl et al. 2020; Klein
et al. 2019; Levine et al. 2010, 2009; Stone et al. 2004]. However,
most of them are often limited in generating the gesture of a single
talking avatar or dyadic conversational animation. Recently, a deep
learning based approach [Jin et al. 2019] was proposed to tackle
the synthesis of head-and-eye motion in three-party conversations,
but it mechanically divides the problem to two independent sub-
problems: a LSTM (Long Short-Term Memory) based model for
synthesizing the speaker’s head-and-eye motion and the second
LSTM based model for synthesizing listeners’ head-and-eye motion.
More importantly, the mechanical task separation may not generate
the natural flow of conversational gestures among interlocutors.

Inspired by the above challenge, in this paper we propose a
novel holistic framework to automatically generate conversational
gesture kinematics for three party conversations, with the input
speech and its corresponding speaker marking (i.e., the speaking
time of each interlocutor). Specifically, based on a pre-collected
three-party conversational motion dataset (including eye motion,
head motion, hand gesture, torso movement, and acoustic speech of
all the interlocutors engaged in natural three-party conversations),
we design a conditional Generative Adversarial Networks (cGAN)
based architecture, called S2M-Net, for the synthesis of speech-
driven three-party conversational animation. In its architecture,
a generator contains a LSTM encoder to generate a sequence of
acoustic speech features to a latent vector. Then, the latent vector is
further fed into a transform unit to transform the latent vector into
a gesture kinematics space. Finally, the output of this transform unit
is fed to a LSTM decoder to generate corresponding conversational
gesture kinematics. Meanwhile, a discriminator is designed to check
whether an input sequence of three-party conversational gesture
kinematics is real or fake. To evaluate our method, we performed
both quantitative and qualitative evaluations on the results by our
approach, and also compared it with a state of the art approach. In
addition, we conducted a paired comparison user study to validate
the realism of the synthesized animations by our approach.

In sum, our S2M-Net framework is the first cGAN-based archi-
tecture specifically designed for the automated holistic generation
of three-party conversational motion given the input of acoustic
speech signals. Furthermore, we introduce two new loss functions
into the S2M-Net architecture for the optimization of the conver-
sational motion generator. We also introduce LSTM units as the
encoder and the decoder in the S2M-Net architecture to handle
temporal input and output.

2 RELATEDWORK
In this section, we briefly review the recent efforts that are most
related to our work, including conversational head-and-eye anima-
tion, conversational gesture synthesis, and conditional GAN-based
learning.

Conversational Head and Eye Animation. Head and eye motions
are an indispensable part of animated virtual humans. Many previ-
ous works have been done for gaze synthesis [Ruhland et al. 2014].
As one of the early data-based methods, Lee et al. [2002] statistically
analyze pre-recorded gaze data of a human subject during speak-
ing/listening and then further generate novel saccadic movements
using first-order statistics. Graf et al. [2002] studied the conditional
probabilities of pitch accents accompanied by certain primitive head
movements (e.g., nodding). Vinayagamoorthy et al. [2004] proposed
a computational model to generate gazes for two avatars in a dyadic
interaction in virtual environment, based on a pre-collected face-to-
face gaze dataset. Busso et al. [2007; 2005] proposed a framework
to synthesize expressive head motion sequences based on prosodic
features of novel input audio.

In light of the importance of a large amount of data for head mo-
tion generation, Chuang and Bregler [2005] first collect a database
of head motion sequences, indexed by pitch features, and then gen-
erate novel head motion sequences through dynamic programming
that aims to maximize the match between the pitch features in the
database and those of new inputted speech. Along the data-driven
direction, Deng and colleagues [Deng et al. 2005; Le et al. 2012; Ma
and Deng 2009] developed several statistical gaze and/or head-gaze
models from pre-recorded conversational head/eye motion data,
in particular, statistical modeling of the coupling between gaze
and head movement. Recently, Jin et al. [2019] proposed a deep
learning based method to synthesize gaze and head motions of the
interlocutors in a three-party conversation based on speech input.
However, their method mechanically separates listeners’ motion
from the speaker’s motion, by training two independent motion
synthesis models for listeners and the speaker, respectively. In addi-
tion, researchers have also explored the visual attention in virtual
environment to guide the generation of plausible avatar gazes [Gu
and Badler 2006; Peters and O’Sullivan 2003].

Conversational Gesture Synthesis. As one of the early works in
this direction, Cassell et al. [1994] designed a rules-based system
to generate hand gestures and other communicative gestures for
conversational agents. Later, Cassell et al. [2001] further developed
an extensible BEAT toolkit to take texts as the input and generate
synchronized nonverbal conversational gesture behaviors, based on
a set of rules extracted through linguistic and contextual analysis
of the input texts. Recently, Marsella et al. [2013] proposed a rules-
based animation method to generate virtual conversations between
two parties, driven by speech as well as annotated texts as the
input. Realizing the importance of data-driven schemes, Stone et
al. [2004] proposed a data-driven method to generate an animated
speaking character through the optimal re-combination of existing
samples. Later, Levine et al. [2010; 2009] proposed two data-driven
animation methods to synthesize conversational gesture kinematics
of a talking avatar. Both of them utilize prosody features of speech
to animate body language, which can be extended for two-party



S2M-Net: Speech Driven Three-party Conversational Motion Synthesis Networks MIG ’22, November 3–5, 2022, Guanajuato, Mexico

conversation applications. Several gesture synthesis methods which
use either audio or text as input are proposed [Ahuja et al. 2019;
Ginosar et al. 2019; Kucherenko et al. 2020; Liang et al. 2022; Liu et al.
2022; Yang et al. 2020; Yoon et al. 2020, 2019] thanks to the increasing
of relative dataset and the deep learning architectures. However,
none of those work can effectively synthesis the conversation with
three or more persons.

Conditional GANs (cGANs). cGANs have been previously ex-
ploited for discrete labels [Denton et al. 2015; Gauthier 2014; Mirza
and Osindero 2014], texts [Reed et al. 2016b], and images [Isola
et al. 2017]. cGANmodels have been employed for image prediction
from a normal map [Wang and Gupta 2016], future frame prediction
[Mathieu et al. 2015], product quality photo generation [Yoo et al.
2016], image generation from sparse annotations [Karacan et al.
2016; Reed et al. 2016a], image generation from sketches [Isola et al.
2017], etc. However, all these methods only consider the image in-
put using convolutional layers, which cannot be directly utilized for
a sequence input such as continuous acoustic speech. Recently, Yu
and Canales [2019] proposed a conditional LSTM-GAN for melody
generation from lyrics, by taking sequences of noisy vectors con-
ditioned on sequence of syllable-embedding vectors to generate
melody. In contrast, our cGAN-based architecture not only handles
sequence input/output but also handles the nontrivial mapping
problem between speech and three-party conversational gesture
kinematics, which cannot be achieved by the existing LSTM-GAN
framework [Yu and Canales 2019].

3 OUR APPROACH OVERVIEW
Speech-driven three-party conversational gesture generation can
be formulated as a mapping from speech to gesture. Therefore, the
main task of our work is to build the mapping from the acoustic
speech space to the three-party conversational gesture kinemat-
ics space. Note that we primarily focus on three-party conversa-
tions without overlapping speech, that is, there is one speaker and
two listeners at any moment. Formally, given a set of paired se-
quence of speech features 𝑋 = (𝑥1, · · · , 𝑥 |𝑋 |) and speaker marking
𝑀 = (𝑚1, · · · ,𝑚 |𝑀 |) with corresponding three-party conversa-
tional gesture kinematics 𝑌 = (𝑦1, · · · , 𝑦 |𝑌 |), our goal is to estab-
lish a mapping 𝑇 : (𝑋 |𝑀) → (𝑌 |𝑀). In this work, we treat it as a
cross-modal translation problem.

Our method utilizes a pre-recorded three-party conversational
motion dataset, which includes the simultaneously recorded conver-
sational gestures (including eyemotion, headmotion, hand gestures,
and body movement) and accompanying acoustic speech of all the
interlocutors engaged in natural three-party conversations. From
the data, we first extract acoustic speech features paired with ges-
ture kinematics. We also manually annotate the speaker marking
information for the three interlocutors. Then, we train the S2M-Net
2 (a cGAN-based architecture network, described in Section 5) that
consists of a LSTM encoder, a transform unit, a LSTM decoder in
generator, and a LSTM architecture in discriminator. The input for
the generator is acoustic speech features conditioned on the speaker
marking, the input for the discriminator is conversational gesture
kinematics conditioned on the speaker marking. At the second
step, since our architecture can only generate fixed-length gesture
kinematics, we then concatenate the generated gesture kinematics

together to form the final motions of the three interlocutors in a
conversation. Figure 2 illustrates the pipeline of our approach. Note
that the speaker marking information is user-provided beforehand
and is used as one of the inputs to our approach. The root joints of
the three interlocutors are fixed during training and synthesis. We
fix a relatively short input length to ensure less information loss
due to the structural bottleneck of the encoder and decoder.

4 DATA PREPROCESSING
The three-party conversation motion dataset used in this work
contains audio and motion of all three interlocutors (e.g., joint an-
gles, 3D head movements, and gaze motion (yaw and pitch angles)).
The dataset contains 10 three-party conversation sessions: 5 of the
sessions for three males and others for three females. Each of the
session lasts from 8 to 10 minutes. The total number of frames in
the dataset is about 144k after the dataset was re-sampled to 30
frames per second. All the angles are represented as Euler angles.
A ten-cameras VICON optical motion capture system was used to
record the joint angles of each interlocutor, and the close-up facial
video of the three interlocutors were captured by three Canon HD
cameras, respectively. The gaze angles at each frame were extracted
using two existing methods [Le et al. 2012; Wang et al. 2016] based
on the recorded face video of each interlocutor.

We also down-sampled the recorded audio to 30Hz. The funda-
mental frequency (F0) and the first 32 dimensions of Mel-frequency
cepstral coefficients (MFCCs) were extracted from audio as the
acoustic speech features for every frame. The speakermarking infor-
mation was represented as a three-dimensional one-hot vector for
the three interlocutors in one frame, where 1 indicates speaking at
this frame and 0 indicates non-speaking (i.e., listening). To this end,
we define the gesture kinematics in our work as a 44-dimensional
vector per frame for each interlocutor including gaze (i.e., yaw and
pitch angles), head movement (i.e., yaw, roll, and pitch angles), neck
joint, spine joints (3 spine joint per interlocutor), hip joint, left/right
shoulder joints, left/right upper arm joints, left/right forearm joints,
and left/right hands. All the joint angles were normalized to the
range from 0 to 180 degree to eliminate the discontinued angle
situation. The three 44-dimensional vectors (of the three interlocu-
tors) were concatenated to form a 132-dimensional vector (called a
gesture kinematics vector in this work) for each frame, in concert
with the speaker marking (e.g., the first interlocutor expressed in
the speaker marking corresponds to the first 44 elements in the
gesture kinematics vector, and so on). Each element in the gesture
kinematic vector is normalized to the range from 0 to 1. To preserve
the turn taking/keeping flow in natural three-party conversations,
we intentionally extracted the above gesture kinematics vectors
with time overlapping, as illustrated in Figure 3. In this work, each
sample has 120 frames. That is, each sample has 120 × 33 dimen-
sions for speech features, 120 × 3 dimensions of speaker marking,
and 120 × 132 dimensions for gesture kinematics. In total, we have
28,689 samples. And, we split them to a training set (90%) and a test
set (10%).

5 NETWORK ARCHITECTURE
In this section, we describe our S2M-Net architecture to gener-
ate three-party conversational gesture kinematics based on novel
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Figure 2: Pipeline illustration of our approach, which consists of a generator to generate three-party gesture kinematics given
acoustic speech input, a discriminator with the adversarial loss combined with two new loss functions introduced by us to
optimize the generator, and a post-processing step to generate three-party conversational animations.

Data Sequence

120 frames
120 frames

Person1 Speaking

10 frames

Samples

Non-speaking

120 frames
120 frames

10 frames

Figure 3: Illustration of data sample generation in this work.
Each sample contains 120 frames with 110 frames overlapped
with the previous/next samples.

speech input, as illustrated in Figure 2. The conditional generator
G in our model contains a LSTM encoder, a transform unit, and
a LSTM decoder. Our conditional discriminator D is designed to
ensure G can be optimized effectively. We utilize the cGAN archi-
tecture [Mirza and Osindero 2014], instead of the traditional GAN
architecture [Goodfellow et al. 2014a], to emphasize the role of the
speaker marking information during model training.

1024
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LSTM Encoder LSTM Decoder
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36 1024 1024 1321024 1024 132
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Transform Unit

x1
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Figure 4: The architecture of the generatorG.With the speech
features 𝑋 = (𝑥1, · · · , 𝑥 |𝑋 |) and the speaker marking 𝑀 =

(𝑚1, · · · ,𝑚 |𝑀 |), the generator can output gesture kinematics
𝑌 = (𝑦1, · · · , 𝑦 |𝑌 |) through the LSTM encoder, the transform
unit, and the LSTM decoder.

5.1 Conditional Generator
As illustrated in Fig. 4, our conditional generator first takes a se-
quence of speech features input 𝑋 with its speaker marking𝑀 and
encodes it into a latent vector 𝑍 (𝑋 |𝑀) . Then, through the proposed
transform unit, we transform the latent vector from the speech
features space to the gesture kinematics space 𝑍 (𝑌 |𝑀) . Finally, the
output of the transform unit is fed into the decoder to generate
gesture kinematics 𝑌 . We describe each module below.

LSTM Encoder. Unlike the previous work [Yu and Canales 2019],
we first utilize 2 fully connected (FC) layers to combine input speech
features with the speaker marking. Each FC layer followed by batch
normalization, leaky ReLU activation, and dropout layer. The first
layer has 1024 hidden units, and the output layer has 256 hidden
units (refer to Figure 4). Since the dimensions of speech features
dominate those of speaker marking (i.e., 33 dimensions vs 3 di-
mensions in one frame), the FC layers can easily extract the useful
information from the two inputs and weaken the domination ef-
fect by projecting those inputs to a high-dimensional space. The
output sequence of the FC layers (256 dimensions in one frame)
is fed into a 2-layers LSTM unit to encode the input sequence to
a 1024-dimensional latent vector 𝑍 (𝑋 |𝑀) (the blue bar connected
after the LSTM Encoder). We also record the cell state 𝑐 |𝑋 | (256
dimensions). Each layer of the LSTM contains 1024 hidden units.

Transform Unit. The transform unit can transform the latent
vector 𝑍 (𝑋 |𝑀) (1024 dimensions) to 𝑍 (𝑌 |𝑀) (132 dimensions). As
illustrated in Fig. 4, we utilize a 4-layers FC layer to handle the
transform task since both the input and the output of the transform
unit contain vectors with small lengths, which can easily feed into
the FC layer. Each FC layer is followed by batch normalization, leaky
ReLU activation, and dropout layer. The first three FC layers have
1024 hidden units, and the last FC layer has 132 hidden units. The
cell state of the LSTM encoder is also transformed to 132 dimensions
through the transform unit.
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Figure 5: (a): The generator loss between our architecture
with the transform unit and without the transform unit. (b):
The L2 kinematics distance loss of our architecture with the
transform unit and without the transform unit.

The transform unit can effectively facilitate the generative capa-
bility of the generator since this unit builds the relation between
two non-linear feature spaces (i.e., the speech feature space, and
the conversational gesture kinematics space). Fig. 5 shows the ef-
fect of the transform unit. The generator can generate good ges-
ture kinematics to fool the discriminator even in late epochs with
the transform unit (Fig. 5(a)). Since the discriminator can become
stronger during training, which will increase the generator loss,
but a lower generator loss still reflects the stronger capability of
generating samples to fool the discriminator. Also, the L2 distance
loss shows that the generated gesture kinematics are better using
the architecture with the transform unit than the one without it, as
shown in Fig. 5(b).

LSTM Decoder. To decode the latent vector outputted from the
transform unit to a sequence of gesture kinematics, we utilize a
2-layers LSTM unit. Each layer of the LSTM contains 132 hidden
units. The first frame of the gesture kinematics is generated by the
output of the transform unit (i.e., the transformed latent vector
and the transformed cell state), and the following frames of the
gesture kinematics are generated by the previously generated frame
of gesture kinematics and the previous cell state of one LSTM
cell in the LSTM unit. Since our training samples contain gesture
kinematics with the pre-defined length (i.e., 120 frames per sample),
the decoder will not stop until the generated gesture kinematics
have the pre-defined length.

5.2 Conditional Discriminator
The conditional discriminator is used to check whether the input
sequence is real gesture kinematics 𝑌 or fake gesture kinematics
𝑌 under the speaker marking condition 𝑀 . Since the input is a
sequence, we utilize a LSTM unit combined with a FC layer to
handle this classification problem. The architecture is illustrated in
Fig. 6. Specifically, we first concatenate the input gesture kinematics
with the speaker marking, frame by frame, into a sequence of 135-
dimensional vectors. Then, it is fed into the 1-layer LSTM unit to
generate a 512-dimensional vector which is further fed into the FC
layer followed by the dropout layer. The final output is a scalar
value.

512

1

FC Layer LSTM CellInput/Output
 Layer

Speaker Marking

135 135
y1 y|Y|

Figure 6: The architecture of the discriminator D. With ges-
ture kinematics 𝑌 = (𝑦1, · · · , 𝑦 |𝑌 |) as the input, the discrimi-
nator checks whether the input sequence is real or fake to
optimize the generator through back-propagation.

6 OBJECTIVE FUNCTIONS
To learn the transform functions from the speech features space
to the gesture kinematics space (i.e., optimize the generator), we
introduce three loss functions: (i) adversarial loss, (ii) L2 distance
loss between the generated gesture kinematics and the ground
truth, and (iii) smoothness loss. During training, we utilize the
back-propagation algorithm on these loss functions to update the
weights of our network.

Adversarial Loss. The objective of our network can be expressed
as:

L𝑐𝐺𝐴𝑁 (G,D) = E𝑀,𝑌 [logD(𝑀,𝑌 )]
+E𝑀,𝑋 [log (1 − D(𝑀,G(𝑀,𝑋 ))], (1)

where G aims to minimize this objective against the adversarial
D that attempts to maximize it, i.e., G∗ = argminGmaxD L𝑐𝐺𝐴𝑁 .
The adversarial loss ensures that the output distribution of the
conditional generator matches the target distribution of the gesture
kinematics 𝑌 [Goodfellow et al. 2014b].

Kinematics Distance Loss. Inspired by the previous works [Isola
et al. 2017; Pathak et al. 2016] that show the benefit of mixing the
GAN objective with a more traditional loss, in order to improve the
generation results, we add an L2 distance loss to push the generated
results towards the ground truth in the L2 sense using the following
function:

L𝑘 (G) = E𝑀,𝑋,𝑌 [| |𝑤 ⊙ (𝑌 − G(𝑀,𝑋 )) | |2],

𝑤𝑖 =

{
𝛼 if 𝑖 ∈ N𝐴 and𝑀𝑝 = 1,where 𝑝 = ⌊ 𝑖44 ⌋
1 otherwise

(2)

where ⊙ denotes the element-wise multiplication between vectors
and𝑤𝑖 ∈ 𝑤 , 𝛼 is a constant, N𝐴 denotes the positions of the fore-
arms, upper arms and hands elements in one gesture kinematics
vector, and𝑀𝑝 is the speaker marking for the interlocutor 𝑝 . Since
the ranges of the joint angles of the forearms, upper arms, and
hands are typically significantly larger than the ranges of other
joint angles for the speaker during conversations, we introduce𝑤
to give larger penalties to the joint angles of the forearms, upper
arms, and hands of the speaker.

Smoothness Loss. Since the velocities of joint angles are impor-
tant parameters of gesture kinematics, we add an L1 distance loss
to evaluate the velocity difference between the output of G and the
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Figure 7: (a): The comparison of the generator loss between
our architecture and the vanilla cGAN [Mirza and Osindero
2014]. (b): Th comparison of the L2 RL between our architec-
ture and the vanilla cGAN [Mirza and Osindero 2014].
ground truth as follows:

L𝑠 (G) = E𝑀,𝑋,𝑌 [| |𝑤𝑠 ⊙ (d𝑌 − dG(𝑀,𝑋 )) | |1],

𝑤𝑠𝑖 =

{
𝛼𝑠 if 𝑖 ∈ N𝐴 and𝑀𝑝 = 1,where 𝑝 = ⌊ 𝑖44 ⌋
1 otherwise

(3)

where ⊙ denotes the element-wise multiplication between vectors
and 𝑤𝑠𝑖 ∈ 𝑤𝑠 , N𝐴 denotes the positions of the forearms, upper
arms, and hands elements in one gesture kinematics vector, and
𝑀𝑝 is the speaker marking for the interlocutor 𝑝 . This loss function
can effectively reduce the stiff motions and loop motions (e.g., arms
regularly move up and down in an approximately constant speed).

The full objective function can be summarized as follows:
G∗ = arg𝑚𝑖𝑛

G
𝑚𝑎𝑥
D
L𝑐𝐺𝐴𝑁 (G,D) + _𝑘L𝑘 (G) + _𝑠L𝑠 (G) . (4)

Fig. 7 shows the comparison of the generator loss curves and
the RL curves between our proposed loss functions and the vanilla
cGAN [Mirza and Osindero 2014] that only has the adversarial loss.
As shown in this figure, our loss functions can lead to significantly
smaller losses than the vanilla cGAN, in particular, the L2 loss. A
lower L2 loss represents a better reconstruction of gesture kine-
matics. The generator loss increases after several epochs, since the
discriminator is trained well and it will be more and more difficult
for the generator to generate samples to fool the discriminator.
Since our S2M-Net has a more powerful generator that can better
fool the discriminator, the generator loss by our S2M-Net is smaller
than that of the vanilla cGAN.

7 TRAINING DETAILS
In our experiments, we trained our S2M-Net architecture by follow-
ing the techniques proposed by Zhu et al. [2017]. We applied the
Adam solver and the momentum parameters: 𝛽1 = 0.9, 𝛽2 = 0.999.
For first 40 epochs, we kept the learning rate at 0.0005 for both G
and D. After that, we linearly decayed the learning rate to 0 over
the remaining epochs. We trained it with 1000 epochs. The batch
size was set to 128, and each batch was randomly selected from
the training dataset. We set _𝑘 = 300 in Equation 4 and _𝑠 = 1 in
Equation 4. The keep probability for dropout layers was 0.2, and the
𝛽 was set to 0.2 in all leaky ReLU activations. We also set 𝛼 = 5 and
𝛼𝑠 = 10. All the hyper-parameter values were empirically chosen
via our experiments. The training of our architecture took about
19 hours on an off-the-shelf computer with an Intel(R) Core(TM) i7-
8700K CPU @ 3.70GHz, a NVIDIA GeForce RTX 2080TI GPU, and

32GBMemory size (RAM). During tests, we did not apply batch nor-
malization and dropout layers, which would lower the performance
during inference.

8 POST-PROCESSING
Since the direct output of our S2M-Net architecture are gesture
kinematics sequences with a pre-defined length (i.e., 120 frames),
we also need to design a post-processing method to concatenate the
outputted gesture kinematics sequences together to form a much
longer, continuous gesture kinematics sequence.

The details of our gesture kinematics concatenation algorithm
for one interlocutor is shown in Algorithm 1. Specifically, instead
of cutting the input speech features to parts with the pre-defined
length to generate gesture kinematics, we extract the speech fea-
tures with an overlap of 30 frames. As shown in Fig. 8, the larger the
overlap frame length, the smaller the average MSE value at the con-
catenation position. However, since a larger overlap frame length
would generate artifacts such as possible elimination of some short
sequences of hand gesture, we experimentally choose the overlap
length of 30 frames. Note that the sampling rate of our motion data
is also 30 frame per second.

In this work, we experimentally set the overlap frame length to 30.
Thus, the directly generated gesture kinematics also have an overlap
of 30 frames. We first split the whole 120 frames × 132-dimensional
gesture kinematics sequence to three 120 frames × 44-dimensional
gesture kinematics sequences, each of which represents the motion
of one interlocutor. For each interlocutor, we iterate the overlapped
30 frames of two consecutive gesture kinematics sequences (called
the preceding/succeeding sequences) and identify one particular
frame that has the minimal mean squared error (MSE) between the
two (line 3 ∼ line 8 in Algorithm 1). Based on the identified MSE,
we select a length 𝐿 = 30 - offset to do an interpolation between the
(120−𝐿)-th frame of the preceding gesture kinematics sequence and
the first frame of the succeeding gesture kinematics sequence (line
12). In this way, the two sequences can be blended to form a new
gesture kinematics sequence with 210 frames. For each interlocutor,
we repeat the same process to concatenate more sequences. Finally,
we apply the Savitzky-Golay filter on the concatenated gesture
kinematics to further smooth the motion.

Figure 8: The average MSE values of gesture kinematics at
the concatenation positions for three interlocutors (Y axis)
with the increase of the overlap frame length (X axis).

9 RESULTS AND EVALUATIONS
We used our approach to generate many conversational animations
based on audio input. In particular, the text content of test speech
clips was not included in our training data. For animation results,
please refer to the enclosed demo video.
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Algorithm 1: Concatenation Algorithm
Input :Gesture kinematics sequences 𝑠𝑒𝑞1 and 𝑠𝑒𝑞2
Output :The concatenated gesture kinematics sequence 𝑠𝑒𝑞

1 Function Frame_Concat(seq1, seq2):
2 while i < 30 do
3 𝑑𝑖𝑠 ←− 𝑀𝑆𝐸 (𝑠𝑒𝑞1[|𝑠𝑒𝑞1| − 30 + 𝑖], 𝑠𝑒𝑞2[𝑖]);
4 if dis < minDis then
5 𝑚𝑖𝑛𝐷𝑖𝑠 ←− 𝑑𝑖𝑠;
6 𝑚𝑖𝑛𝐹𝑟𝑎𝑚𝑒 ←− 𝑖;

7 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ←− max(𝑚𝑖𝑛𝐹𝑟𝑎𝑚𝑒 − 𝑚𝑖𝑛𝐷𝑖𝑠
Y , 0);

8 𝑐𝑜𝑛𝑃𝑜𝑖𝑛𝑡 ←− |𝑠𝑒𝑞1| − 30 + 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ;
9 𝑓 𝑖𝑟𝑠𝑡𝑃𝑎𝑟𝑡 ←− 𝑠𝑒𝑞1[0 : 𝑐𝑜𝑛𝑃𝑜𝑖𝑛𝑡];

10 𝑚𝑖𝑑𝑃𝑎𝑟𝑡

←− 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 (𝑠𝑒𝑞1[𝑐𝑜𝑛𝑃𝑜𝑖𝑛𝑡], 𝑠𝑒𝑞2[𝑚𝑖𝑛𝐹𝑟𝑎𝑚𝑒]);
11 𝑙𝑎𝑠𝑡𝑃𝑎𝑟𝑡 ←− 𝑠𝑒𝑞2[𝑚𝑖𝑛𝐹𝑟𝑎𝑚𝑒 : |𝑠𝑒𝑞2|];
12 𝑠𝑒𝑞←− 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑓 𝑖𝑟𝑠𝑡𝑃𝑎𝑟𝑡,𝑚𝑖𝑑𝑃𝑎𝑟𝑡, 𝑙𝑎𝑠𝑡𝑃𝑎𝑟𝑡 );
13 return 𝑠𝑒𝑞
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Figure 9: Comparison of the yaw angle trajectories for both
the eyes (a) and the head (b) of a randomly selected interlocu-
tor, among our architecture with the transform unit (blue
curves), our architecture without the transform unit (gray
curves), and the original captured motion (red curves).

9.1 Ablation Study
We conducted an ablation study to evaluate algorithm components
(transform unit, and design of loss functions) of our approach by
comparing them with alternative approaches.

Transform Unit. To evaluate the effectiveness of the transform
unit in our architecture, we compared the generated yaw angle
trajectories of both the eyes and the head of a randomly selected in-
terlocutor, among with/without the transform unit and the ground-
truth (i.e., the original captured motion), as shown in Fig. 9. For a
fair comparison, we used the same training data as well as the same
parameters for training. We randomly selected a conversational
audio clip from the retained test set and fed its speech features to
the two architectures (i.e., with/without the proposed transform
unit) to generate corresponding gesture kinematics. We chose the
yaw angle for comparison, since the yaw angles of both the head
and the eyes are most related to turn management in multiparty
conversations. Since our architecture is a generative model, the
generated result may not be highly similar to the ground truth
(red curves). However, our architecture with the transform unit

(blue curves) can learn the reasonable trend of gesture kinematics
than our architecture without the transform unit (gray curves) for
the yaw angle. The results obtained by our architecture without
the transform unit (gray curves) show that it barely learns the dis-
tribution of the conversational gesture kinematics from the same
training data. Note that the blue curves have a similar trend with
the red curves, while the gray curves do not have a trend on the
other hand.

Loss Functions. We compared our proposed loss functions in
Eq. 4 with two other popular designs of the loss functions: (i) the
cGAN [Isola et al. 2017] with reconstruction loss (RL) functions
(i.e., not having𝑤 and𝑤𝑠 parameters in Eq. 2 and Eq. 3), and (ii) the
vanilla cGAN [Mirza and Osindero 2014]. For a fair comparison, we
used the same architecture and the same parameters, except using
different loss functions for training. Fig. 10 shows the comparison
of the same frames among the three methods based on the same
conversational audio input. The results based on our loss functions
show more realistic conversational gesture animations than the
other two designs. Note that the vanilla cGAN generated mean-
ingless gesture kinematics at some frames, since its discriminator
cannot robustly judge an input gesture kinematics sequence is real
or fake, and its generator is barely optimized during training with
only the adversarial loss. Meanwhile, cGAN with RL functions si-
multaneously generated gestures for three interlocutors, but the
results still fall short of realistic three-party conversational gestures.
Animation comparison can be found in the demo video.

9.2 Comparison User Study
We conducted a paired comparison user study to evaluate the re-
alism of the generated conversational gesture animations by our
approach. Specifically, we compared our approach with the ap-
proach by Jin et al. [2019] in a paired way, respectively. We chose
the work of [Jin et al. 2019] for paired comparison, because it is the
recent, most related approach for three-party conversational motion
synthesis. Besides the generation of head-and-eye motion, it also
integrates state-of-art body and hand gesture generation methods
for three-party conversational motion. Note that even though some
recent works (e.g., [Ginosar et al. 2019]) were proposed to generate
conversational gesture, they were primarily focused on the gesture
generation on a single avatar, which cannot be straightforwardly
extended for three-party conversational motion synthesis.

Similar to the previous study in [Jin et al. 2019], we randomly
selected 5 test clips from the retained test set; each lasts about 10
to 20 seconds. Then, we animated three virtual interlocutors to
generate three-party conversational animations using two different
approaches, respectively: our approach and [Jin et al. 2019]. Note
that although the method in [Jin et al. 2019] is focused on the gen-
eration of head-and-eye motion for three-party conversations, it
also mentions solutions (i.e., borrow or extend previous works) to
generate other aspects of three-party conversational animations, in-
cluding lip-sync, hand/body gesture of the speaker, and hand/body
gesture of listeners. For a fair comparison, we used the same lip-
sync method in both cases. In this way, we constructed 5 pairs of
stimuli for comparing our approach to [Jin et al. 2019]. To avoid
the potential bias, we randomized both the displayed order of these
stimuli pairs and the left/right positions of the two clips in each
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(a)

(b)

Vanilla cGAN
Mirza et al. [2014]

cGAN with RL
Isola et al. [2017]

Ours

Figure 10: The direct comparison of our proposed loss functions (ours) with the cGAN with RL functions [Isola et al. 2017] and
the vanilla cGAN [Mirza and Osindero 2014] at two frames (a) and (b). The green triangles point to the speaker at a specific
frame.

Figure 11: Experiment setup of our paired comparison user
study. (left) Two animation videos (with audio) are displayed
side by side for the participants tomake perceptual judgment.
(right) During the study, the participants can choose to zoom
any video to full screen to ensure any detailed motion (e.g.,
eye motion) can be observed clearly.

pair for each participant. Fig. 12 shows the direct comparison of
two selected frames between the two approaches. Note that the
rendered virtual characters have the same skeleton topology as the
three-party conversation motion dataset used in our work.

The same 3D scene, characters, and video resolution (1920 ×
1080 pixels) with the same audio for one pair of stimuli were used.
Participants were instructed to sit on a chair in a controlled envi-
ronment, with approximately a 0.6m distance away from a LCD
monitor with 1920 × 1080 resolution. Two high quality speakers
were used to play the audio. We recruited a total of 16 student
volunteers in a university campus (14 males, 2 females; from 22
to 36 years old) to participate in our study. All of them did not
have difficulty to understand English-language television or film
without subtitles. Fig 11 shows the experiment setup used in our
user study. The participants can watch a pair many times as they
want before they make a choice, and they can also optionally select
any clip from a pair and play it in full screen (refer to the right of
Fig. 11). After watching each pair, the participants were asked to

(a)

(b)

Jin et al.
[2019]

Ours

Figure 12: Direct comparisons of two randomly selected
frames between the state of the art method [Jin et al. 2019]
and our approach based on the same conversational audio
input. The green triangles point to the speaker at a specific
frame. The red circles mark the wrong gesture that usually
should not happen in a real-world three-party conversation.

select the clip in which three-party conversational gesture motion
appears perceptually more natural for them. They also can choose
the undecided option if they had difficulty to tell which one appears
more natural. To make a fair comparison, at the beginning of our
user study, we instructed participants to make their perceptual
judgements by focusing on the whole three-party conversational
gesture, instead of the gesture of any individual interlocutor.

Fig. 13 shows the obtained user voting result. Based on the result,
we can see that our approach can generatemore realistic three-party
conversational animations than [Jin et al. 2019]. The possible main
reason is that, our approach considers the three interlocutors as a
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Figure 13: The obtained voting result in our user study. The
number shown in each color block is the total count of votes
received by one specific approach. The result marked with ∗
denotes p-value < 0.05 for the comparison in the row through
a two-tailed independent paired t-test.

group and model their gesture kinematics in a holistic framework,
instead of modeling their gesture motions independently as in
[Jin et al. 2019]. Therefore, our approach can soundly capture the
potential correlations between their conversational gestures.

9.3 Runtime Statistics
In all of our experiments, we ran our system on an off-the-shelf
computer with an Inte(R) Core(TM) i7-8700K CPU@3.70GHz, 32GB
Memory and NVIDIA Geforce RTX 2080TI GPU. The runtime statis-
tics of several of our experiments were reported in Table 1, including
the key steps of our approach: the generation step (about constant
time) and the post-processing step (approximately linear to the
length of the test audio). In sum, the training of our model takes
a few hours on an off-the-shelf computer (reported in §7), but its
runtime efficiency is high after the model is offline trained.

Table 1: Runtime statistics of our approach, including the
time for the generation step, the time for the post-processing
step, and the total computational time.

Test
Audio

Audio Len.
(second)

Generation
(second)

Post-processing
(second)

Total
(second)

No. 1 97.1 0.001 0.150 0.151
No. 2 145.1 0.001 0.234 0.235
No. 3 214.2 0.001 0.354 0.355

10 DISCUSSION AND CONCLUSION
In this paper, we present a cGAN-based architecture, S2M-Net, to
holistically generate realistic gesture kinematics for three-party
conversations from acoustic speech input. Our work essentially
trains a deep learning network to generate three-party conversa-
tional animations based on the audio input alone. To optimize the
generator, we introduce two new loss functions as well as a trans-
form unit to guide effective motion generation. Even though our
approach does not support the overlapping of multiple speakers
at the same time, our algorithm can generate realistic three-party
kinematics, which cannot be handled by existing approaches. Our
approach could be potentially extended to generate the animations
of multi-party conversations involved with more than three parties.

Limitations. Our current work has the following limitations.
First, since our approach does not consider semantic and affec-
tive aspects of the conversation, the generated gesture kinematics
may not be perfectly in concert with the conversation content for
some cases. Second, limited to the size and variety of the training
data, the generated gesture kinematics by our approach may not

have a sufficient variety. A larger dataset with a high variety would
help to alleviate this issue. Third, since our training data do not
contain overlapping speech (i.e., two or more interlocutors speak
at the same time), our approach may not be able to robustly handle
the input with overlapping speech (an example result is shown in
Fig. 14). Finally, finger motion is often necessary to convey certain
subtle communication in multiparty conversations. However, due
to the lacking of detailed finger motion in our training data, our
approach cannot synthesize such motion.

Figure 14: An example result by our approach given an input
of overlapping speech. The two green triangles point to the
two speakers in the input overlapping speech. As shown in
the two frames, our approach can only generate the hand
gesture for the green avatar (center), but not for the red avatar
(left).

Future work. We would like to explore techniques to utilize vari-
ous semantic features of conversational content and add detailed
finger gesture for the generation of realistic multiparty conver-
sational animation. Also, we plan to make the current pipeline
editable, where users can efficiently add/delete conversational ges-
ture segments to refine the animation. We are also interested in
extending the current framework for the generation of more general
forms of multiparty conversational animations. Finally, real-time
generation of continuous conversational gesture given live audio
input will be another future challenge to explore.
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